Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum)
El estudio analiza las tendencias de investigación sobre el aprovechamiento de las vinazas generadas en el beneficio de la caña de azúcar, en el contexto de la bioeconomía y la economía circular como megatendencias de I+D+i orientadas a la diversificación sostenible de los sistemas agroalimentarios....
| Autor principal: | |
|---|---|
| Formato: | info:eu-repo/semantics/report |
| Lenguaje: | Español |
| Publicado: |
Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
2025
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/20.500.12324/41302 https://doi.org/10.21930/agrosavia.vigilanciacientifica.2025.3 |
| _version_ | 1854957207038197760 |
|---|---|
| author | Flórez Martínez, Diego Hernando |
| author2 | Flórez Martínez, Diego Hernando |
| author_browse | Flórez Martínez, Diego Hernando |
| author_facet | Flórez Martínez, Diego Hernando Flórez Martínez, Diego Hernando |
| author_sort | Flórez Martínez, Diego Hernando |
| collection | Repositorio AGROSAVIA |
| description | El estudio analiza las tendencias de investigación sobre el aprovechamiento de las vinazas generadas en el beneficio de la caña de azúcar, en el contexto de la bioeconomía y la economía circular como megatendencias de I+D+i orientadas a la diversificación sostenible de los sistemas agroalimentarios. A partir del marco 9R de la economía circular, se destacan estrategias como recuperar, reutilizar y reducir coproductos y residuos agroindustriales. Mediante un escaneo bibliométrico en las bases de datos OpenAlex® y Scopus®, se recopilaron 741 publicaciones (356 y 385 respectivamente) para identificar líneas de investigación, alternativas de uso y potencial biotecnológico de las vinazas. Los análisis cienciométricos y de coocurrencia se realizaron con las herramientas Bibliometrix® y VOSviewer®, permitiendo visualizar clústeres temáticos y tendencias globales en la valorización de estos efluentes. |
| format | info:eu-repo/semantics/report |
| id | RepoAGROSAVIA41302 |
| institution | Corporación Colombiana de Investigación Agropecuaria |
| language | Español |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA |
| publisherStr | Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA |
| record_format | dspace |
| spelling | RepoAGROSAVIA413022025-11-20T14:13:16Z Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Flórez Martínez, Diego Hernando Flórez Martínez, Diego Hernando Agroindustria - E21 Saccharum officinarum Vinaza Agroindustria Investigación Transitorios http://aims.fao.org/aos/agrovoc/c_6727 http://aims.fao.org/aos/agrovoc/c_27624 http://aims.fao.org/aos/agrovoc/c_28831 http://aims.fao.org/aos/agrovoc/c_6513 El estudio analiza las tendencias de investigación sobre el aprovechamiento de las vinazas generadas en el beneficio de la caña de azúcar, en el contexto de la bioeconomía y la economía circular como megatendencias de I+D+i orientadas a la diversificación sostenible de los sistemas agroalimentarios. A partir del marco 9R de la economía circular, se destacan estrategias como recuperar, reutilizar y reducir coproductos y residuos agroindustriales. Mediante un escaneo bibliométrico en las bases de datos OpenAlex® y Scopus®, se recopilaron 741 publicaciones (356 y 385 respectivamente) para identificar líneas de investigación, alternativas de uso y potencial biotecnológico de las vinazas. Los análisis cienciométricos y de coocurrencia se realizaron con las herramientas Bibliometrix® y VOSviewer®, permitiendo visualizar clústeres temáticos y tendencias globales en la valorización de estos efluentes. Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA Caña panelera-Saccharum officinarum - Saccharum officinarum L. 2025-10-27T19:35:35Z 2025-02-15 2025-02-15 info:eu-repo/semantics/report Estudio de vigilancia https://hdl.handle.net/20.500.12324/41302 https://doi.org/10.21930/agrosavia.vigilanciacientifica.2025.3 spa Serie Documentos de Trabajo Agusta, H., Nisya, F. N., Iman, R. N., & Agustina, S. (2021). The application and effectiveness of fly ash granule using tapioca flour and sugarcane molasses as granule agents for soil ameliorant and fertilizer. IOP Conference Series: Earth and Environmental Science, 623(1). https://doi.org/10.1088/1755-1315/623/1/012063 Ali, S., & Haq, I.-U. (2005). Role of different additives and metallic micro minerals on the enhanced citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. Journal of Basic Microbiology, 45(1), 3 – 11. https://doi.org/10.1002/jobm.200410460 Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics. https://doi.org/10.1016/j.joi.2017.08.007 Aria, M., Cuccurullo, C., D’aniello, L., Misuraca, M., & Spano, M. (2022). Thematic Analysis as a New Culturomic Tool: The Social Media Coverage on COVID-19 Pandemic in Italy. Sustainability (Switzerland), 14(6). https://doi.org/10.3390/su14063643 Bender, J. P., Mazutti, M. A., De Oliveira, D., Di Luccio, M., & Treichel, H. (2006). Inulinase production by Kluyveromyces marxianus NRRL Y-7571 using solid state fermentation. Applied Biochemistry and Biotechnology, 132(1–3), 951 – 958. https://doi.org/10.1385/ABAB:132:1:951 Cabib, G., Silva, H. J., Giulietti, A., & Ertola, R. (1983). The use of sugar cane stillage for single cell protein production. Journal of Chemical Technology and Biotechnology, 33 B(1), 21 – 28. https://doi.org/10.1002/jctb.280330103 Cabral, C. P., & Melo, H. N. S. (2006). Dry sugar cane (Saccharum officinarum) molasses for feeding broilers in different growth phases; [Miel Final de caña de azúcar (Saccharum officinarum) en la alimentación de pollos de ceba en diferentes fases de desarrollo]. Informacion Tecnologica, 17(6). https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846258833&partnerID=40&md5=2ed5a86efb33ed252f6f5bcb59b74105 Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1). https://doi.org/10.1007/BF02019280 Campiteli, L. L., Santos, R. M., Lazarovits, G., & Rigobelo, E. C. (2018). The impact of applications of sugar cane filter cake and vinasse on soil fertility factors in fields having 29 Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Perspectivas científicas del agro four different crop rotations practices in Brazil. Cientifica, 46(1), 42 – 48. https://doi.org/10.15361/1984-5529.2018v46n1p42-48 Cazetta, M. L., Celligoi, M. A. P. C., Buzato, J. B., & Scarmino, I. S. (2007). Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresource Technology, 98(15), 2824 – 2828. https://doi.org/10.1016/j.biortech.2006.08.026 Cazetta, M. L., Celligoi, M. A. P. C., Buzato, J. B., Scarmino, I. S., & Da Silva, R. S. F. (2005). Optimization study for sorbitol production by Zymomonas mobilis in sugar cane molasses. Process Biochemistry, 40(2), 747 – 751. https://doi.org/10.1016/j.procbio.2004.01.041 Cheirsilp, B., Suwannarat, W., & Niyomdecha, R. (2011). Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnology, 28(4), 362 – 368. https://doi.org/10.1016/j.nbt.2011.01.004 Cipolatti, E. P., Remedi, R. D., Sá, C. dos S., Rodrigues, A. B., Gonçalves Ramos, J. M., Veiga Burkert, C. A., Furlong, E. B., & de Medeiros Burkert, J. (2019). Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatalysis and Agricultural Biotechnology, 20. https://doi.org/10.1016/j.bcab.2019.101208 Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1). https://doi.org/10.1016/j.joi.2010.10.002 Cruz, E, Almaguel, R. E., Mederos, C. M., González, C., & Ly, J. (2009). Performance traits of finishing pigs housed in bagasse deep bed and fed with diets based on enriched sugar cane molasses; [Rasgos de comportamiento de cerdos de engorde alojados en cama profunda de bagazo y alimentados con dietas basadas en mieles enrique. Livestock Research for Rural Development, 21(9). https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349559023&partnerID=40&md5=c065d767507e5f9e77726281485407a3 Cruz, Elizabeth, Almaguel, R. E., Mederos, C. M., & Araujo, C. G. (2009). Deep bedding system in the swine production at small scale; [Sistema de cama profunda en la 30 Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Perspectivas científicas del agro producción porcina a pequeña escala]. Revista Cientifica de La Facultad de Ciencias Veterinarias de La Universidad Del Zulia, 19(5), 495 – 499. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952469108&partnerID=40&md5=b60d1433e4931fc3449281822ecbbce7 Cruz, R., Cruz, V. D., Belini, M. Z., Belote, J. G., & Vieira, C. R. (1998). Production of fructo oligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Bioresource Technology, 65(1–2), 139 – 143. https://doi.org/10.1016/S0960-8524(98)00005-4 Cuccurullo, C., Aria, M., & Sarto, F. (2016). Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains. Scientometrics. https://doi.org/10.1007/s11192-016-1948-8 De Solla Price, D. J. (1989). The Science of Science. Science and Public Policy. https://doi.org/10.1093/spp/16.3.152 Del Nery, V., Alves, I., Zamariolli Damianovic, M. H. R., & Pires, E. C. (2018). Hydraulic and organic rates applied to pilot scale UASB reactor for sugar cane vinasse degradation and biogas generation. Biomass and Bioenergy, 119. https://doi.org/10.1016/j.biombioe.2018.10.002 Di Franco, G. (2016). Multiple correspondence analysis: one only or several techniques? Quality and Quantity, 50(3). https://doi.org/10.1007/s11135-015-0206-0 Dias, A. S., Carneiro, P. A., Boloy, R. A. M., César, A. da S., & de Oliveira, U. R. (2024). Advancements in vinasse application: An integrated analysis of patents, literature and research profile. Cleaner Engineering and Technology, 22. https://doi.org/10.1016/j.clet.2024.100795 El-Enshasy, H., Abul-Hamd, A., El-Sehrawi, M., Sidkey, N., & Azazzy, A. (2007). Improvement of cell mass production of thermotolerant Baker’s yeast Saccharomyces cerevisiae using sugar cane molasses based medium in stirred tank bioreactor in batch and fed-batch cultures. Deutsche Lebensmittel-Rundschau, 103(6), 273 – 278. https://www.scopus.com/inward/record.uri?eid=2-s2.0-34250808491&partnerID=40&md5=ef3ff91420fb690c700a4eeb182ea945 España-Gamboa, E. I., Mijangos-Cortés, J. O., Hernández-Zárate, G., Maldonado, J. A. D., & Alzate-Gaviria, L. M. (2012). Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnology for Biofuels, 5. 31 Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Perspectivas científicas del agro https://doi.org/10.1186/1754-6834-5-82 Farooq, U., Anjum, F. M., Zahoor, T., Sajjad-Ur-Rahman, Randhawa, M. A., Ahmed, A., & Akram, K. (2012). Optimization of lactic acid production from cheap raw material: Sugarcane molasses. Pakistan Journal of Botany, 44(1), 333 – 338. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867187311&partnerID=40&md5=e754c4210791ff61f3fde5018890ad2c Ferrara, M. A., Bon, E. P. S., & Neto, J. S. A. (2002). Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 98–100, 289 – 300. https://doi.org/10.1385/ABAB:98-100:1-9:289 Flores-Cocas, J. M., Aguilar-Pérez, C. F., Ramírez-Avilés, L., Solorio-Sánchez, F. J., Ayala-Burgos, A. J., & Ku-Vera, J. C. (2021). Use of rice polishing and sugar cane molasses as supplements in dual-purpose cows fed Leucaena leucocephala and Pennisetum purpureum. Agroforestry Systems, 95(1), 43 – 53. https://doi.org/10.1007/s10457-019-00434-z Giannakos, M., Papamitsiou, Z., Markopoulos, P., Read, J., & Hourcade, J. P. (2020). Mapping child–computer interaction research through co-word analysis. International Journal of Child-Computer Interaction, 23–24. https://doi.org/10.1016/j.ijcci.2020.100165 Gutiérrez-Rivera, B., Ortiz-Muñiz, B., Gómez-Rodríguez, J., Cárdenas-Cágal, A., Domínguez González, J. M., & Aguilar-Uscanga, M. G. (2015). Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renewable Energy, 74, 399 – 405. https://doi.org/10.1016/j.renene.2014.08.030 Hippolyte, M. T., Augustin, M., Hervé, T. M., Robert, N., & Devappa, S. (2018). Application of response surface methodology to improve the production of antimicrobial biosurfactants by lactobacillus paracasei subsp. Tolerans n2 using sugar cane molasses as substrate. Bioresources and Bioprocessing, 5(1). https://doi.org/10.1186/s40643-018-0234-4 Jung, H. J., Kim, S. H., Shin, N., Oh, S.-J., Hwang, J. H., Kim, H. J., Kim, Y.-H., Bhatia, S. K., Jeon, J.-M., Yoon, J.-J., & Yang, Y.-H. (2023). Polyhydroxybutyrate (PHB) production from sugar cane molasses and tap water without sterilization using novel 32 Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Perspectivas científicas del agro strain, Priestia sp. YH4. International Journal of Biological Macromolecules, 250. https://doi.org/10.1016/j.ijbiomac.2023.126152 Kanitkar, A., Aita, G., & Madsen, L. (2013). The recovery of polymerization grade aconitic acid from sugarcane molasses. Journal of Chemical Technology and Biotechnology, 88(12), 2188 – 2192. https://doi.org/10.1002/jctb.4084 Kee, S. H., Ganeson, K., Rashid, N. F. M., Yatim, A. F. M., Vigneswari, S., Amirul, A.-A. A., Ramakrishna, S., & Bhubalan, K. (2022). A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 321. https://doi.org/10.1016/j.fuel.2022.124039 Moraes, C., Monteiro, A. C., Machado, A. C. R., Barbosa, J. C., & Mochi, D. A. (2014). Production of a bioherbicide agent in liquid and solid medium and in a biphasic cultivation system; [Produção de um agente bioherbicida em meio líquido, sólido e em sistema bifásico de cultivo]. Planta Daninha, 32(2), 255 – 264. https://doi.org/10.1590/S0100-83582014000200002 Oltramari, C. E., Nápoles, G. G. O., De Paula, M. R., Silva, J. T., Gallo, M. P. C., Pasetti, M. H. O., & Bittar, C. M. M. (2016). Performance and metabolism of calves fed starter feed containing sugarcane molasses or glucose syrup as a replacement for corn. Asian-Australasian Journal of Animal Sciences, 29(7), 971 – 978. https://doi.org/10.5713/ajas.15.0550 Silva, C. F., Arcuri, S. L., Campos, C. R., Vilela, D. M., Alves, J. G. L. F., & Schwan, R. F. (2011). Using the residue of spirit production and bio-ethanol for protein production by yeasts. Waste Management, 31(1), 108 – 114. 35 Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Perspectivas científicas del agro https://doi.org/10.1016/j.wasman.2010.08.015 Katongole, C. B., Kabirizi, J. M., Nanyeenya, W. N., Kigongo, J., & Nviiri, G. (2016). Milk yield response of cows supplemented with sorghum stover and Tithonia diversifolia leaf hay diets during the dry season in northern Uganda. Tropical Animal Health and Production, 48(7), 1463–1469. https://doi.org/10.1007/s11250-016-1119-1 Kawaguti, H. Y., Buzzato, M. F., & Sato, H. H. (2007). Isomaltulose production using free cells: Optimisation of a culture medium containing agricultural wastes and conversion in repeated-batch processes. Journal of Industrial Microbiology and Biotechnology, 34(4), 261 – 269. https://doi.org/10.1007/s10295-006-0194-0 Lagos-Burbano, E., & Castro-Rincón, E. (2019). Sugar cane and by-products of the sugar agro-industry in ruminant feeding: A review [Caña de azúcar y subproductos de la agroindustria azucarera en la alimentación de rumiantes]. Agronomy Mesoamerican, 30(3), 917–934. https://doi.org/10.15517/am.v30i3.34668 Mehra, M., Kaushik, A., Tyagi, P., Kaswan, V., & Sharma, A. (2018). Polyhydroxybutyrate (PHB) production by utilizing sugarcane molasses as a substrate. Annals of Agri Bio Research, 23(1), 1 – 3. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063576357&partnerID=40&md5=adb3feb3f8105550dcda927355d17457 Mohamed, D. E., Alian, A. M., & Mohamed, R. M. (2024). OPTIMIZATION OF PRODUCTION AND EVALUATION OF MICROBIAL KOJIC ACID OBTAINED FROM SUGARCANE MOLASSES (SCM) BY ASPERGILLUS SP. Food Systems, 7(1), 71 – 76. https://doi.org/10.21323/2618-9771-2024-7-1-71-76 Mohammed, S., Behera, H. T., Dekebo, A., & Ray, L. (2020). Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. 33 Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Perspectivas científicas del agro International Journal of Biological Macromolecules, 156, 1064 – 1080. https://doi.org/10.1016/j.ijbiomac.2019.11.138 Monteiro, A. P. A., Bernard, J. K., Guo, J.-R., Weng, X.-S., Emanuele, S., Davis, R., Dahl, G. E., & Tao, S. (2017). Effects of feeding betaine-containing liquid supplement to transition dairy cows. Journal of Dairy Science, 100(2), 1063 – 1071. https://doi.org/10.3168/jds.2016-11452 Morakile, T., Mandegari, M., Farzad, S., & Görgens, J. F. (2022). Comparative techno-economic assessment of sugarcane biorefineries producing glutamic acid, levulinic acid and xylitol from sugarcane. Industrial Crops and Products, 184. https://doi.org/10.1016/j.indcrop.2022.115053 Orsi, D. C., Kawaguti, H. Y., & Sato, H. H. (2009). Glucosyltransferase production by klebsiella sp. k18 and conversion of sucrose to palatinose using immobilized cells. Brazilian Journal of Microbiology, 40(1), 66 – 72. https://doi.org/10.1590/S1517-83822009000100010 Otero, D. M., Bulsing, B. A., Da M Huerta, K., Rosa, C. A., Zambiazi, R. C., Burkert, C. A. V, & De M Burkert, J. F. (2019). Carotenoid-producing yeasts in the brazilian biodiversity: Isolation, identification and cultivation in agroindustrial waste. Brazilian Journal of Chemical Engineering, 36(1), 117 – 129. https://doi.org/10.1590/0104-6632.20190361s20170433 Pardo, S., Galvagno, M. Á., & Cerrutti, P. (2009). Studies of viability and vitality after freezing of the probiotic yeast Saccharomyces boulardii: physiological preconditioning effect; [Estudios de la viabilidad y la vitalidad frente al congelado de la levadura 34 Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) Perspectivas científicas del agro probiótica Saccharomyces boulardii: efecto . Revista Iberoamericana de Micologia, 26(2), 155 – 160. https://doi.org/10.1016/S1130-1406(09)70028-2 Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4). https://doi.org/10.1016/j.joi.2016.10.006 Phukon, P., Phukan, M. M., Phukan, S., & Konwar, B. K. (2014). Polyhydroxyalkanoate production by indigenously isolated Pseudomonas aeruginosa using glycerol by-product of KCDL biodiesel as an inexpensive carbon source. Annals of Microbiology, 64(4), 1567 – 1574. https://doi.org/10.1007/s13213-014-0800-8 Pupo, M. R., Diepersloot, E. C., Heinzen, C., & Ferraretto, L. F. (2024). Dietary fiber source and direct-fed microbial supplementation effects on lactation performance and feeding behavior of high-producing dairy cows. Journal of Dairy Science, 107(11), 9347 – 9359. https://doi.org/10.3168/jds.2024-25033 Purnomo, C. W., Respito, A., Sitanggang, E. P., & Mulyono, P. (2018). Slow release fertilizer preparation from sugar cane industrial waste. Environmental Technology and Innovation, 10, 275 – 280. https://doi.org/10.1016/j.eti.2018.02.010 Ribas, M. M. F., Chinalia, F. A., Pozzi, E., & Foresti, E. (2009). Microbial succession within an Anaerobic Sequencing Batch Biofilm Reactor (ASBBR) treating cane vinasse at 55°C. Brazilian Archives of Biology and Technology, 52(4), 1027 – 1036. https://doi.org/10.1590/S1516-89132009000400028 Sanyal, P., Gupta, S., Chattopadhyay, S., & Ray, A. K. (2011). Alternative uses of sugarcane molasses and jagerry for production of value added fatty acids, especially oxalic acid. AIChE Annual Meeting, Conference Proceedings. https://www.scopus.com/inward/record.uri?eid=2-s2.0- Sarubbo, L. A., Brasileiro, P. P. F., Silveira, G. N. M., Luna, J. M., Rufino, R. D., & dos Santos, V. A. (2018). Application of a low cost biosurfactant in the removal of heavy metals in soil. Chemical Engineering Transactions, 64, 433 – 438. https://doi.org/10.3303/CET1864073 Sitanggang, E. P. O., & Purnomo, C. W. (2017). The effects of binder on the release of nutrient from matrix-based slow release fertilizer. Materials Science Forum, 886 MSF, 138 – 144. https://doi.org/10.4028/www.scientific.net/MSF.886.138 Sohale, A. P., Janardanan, S., Yadav, D., Dash, B., & Yadav, M. D. (2023). Dark Fermentative Biohydrogen Production: Recent Advances and Challenges. Industrial and Engineering Chemistry Research, 62(37), 14755 – 14771. https://doi.org/10.1021/acs.iecr.3c01439 Sonego, J. L. S., Lemos, D. A., Cruz, A. J. G., & Badino, A. C. (2018). Optimization of Fed-Batch Fermentation with in Situ Ethanol Removal by CO2 Stripping. Energy and Fuels, 32(1), 954 – 960. https://doi.org/10.1021/acs.energyfuels.7b02979 Tse, T. J., Wiens, D. J., Chicilo, F., Purdy, S. K., & Reaney, M. J. T. (2021). Value-added products from ethanol fermentation—A review. Fermentation, 7(4). https://doi.org/10.3390/fermentation7040267 van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. https://doi.org/10.1007/s11192-009-0146-3 Veana, F., Martínez-Hernández, J. L., Aguilar, C. N., Rodríguez-Herrera, R., & Michelena, G. (2014). Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian Journal of Microbiology, 45(2), 373 – 377. https://doi.org/10.1590/S1517-83822014000200002 Wang, X., & Ren, H. (2014). Microbial oil production by Rhodotorula glutinis CICC 31643 using sugar cane molasses. Journal of Renewable and Sustainable Energy, 6(1). https://doi.org/10.1063/1.4861060 Zakeri, A., Pazouki, M., & Vossoughi, M. (2017). Use of Response Surface Methodology analysis for xanthan biopolymer production by Xanthomonas campestris: Focus on agitation rate, carbon source, and temperature. Iranian Journal of Chemistry and Chemical Engineering, 36(1), 173 – 183. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023777816&partnerID=40&md5=0753aafe27d8bc16fd11264709482202 Zheng, Y., Wang, Z., Ji, X., & Sheng, J. (2019). Display of a sucrose isomerase on the cell surface of Yarrowia lipolytica for synthesis of isomaltulose from sugar cane by-products. 3 Biotech, 9(5). https://doi.org/10.1007/s13205-019-1713-9 35 páginas application/pdf application/pdf Sede Central Colombia Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA Mosquera, Cundinamarca |
| spellingShingle | Agroindustria - E21 Saccharum officinarum Vinaza Agroindustria Investigación Transitorios http://aims.fao.org/aos/agrovoc/c_6727 http://aims.fao.org/aos/agrovoc/c_27624 http://aims.fao.org/aos/agrovoc/c_28831 http://aims.fao.org/aos/agrovoc/c_6513 Flórez Martínez, Diego Hernando Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) |
| title | Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) |
| title_full | Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) |
| title_fullStr | Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) |
| title_full_unstemmed | Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) |
| title_short | Vigilancia científica sobre aprovechamiento de vinazas generadas en la agroindustria de la caña de azúcar (Saccharum officinarum) |
| title_sort | vigilancia cientifica sobre aprovechamiento de vinazas generadas en la agroindustria de la cana de azucar saccharum officinarum |
| topic | Agroindustria - E21 Saccharum officinarum Vinaza Agroindustria Investigación Transitorios http://aims.fao.org/aos/agrovoc/c_6727 http://aims.fao.org/aos/agrovoc/c_27624 http://aims.fao.org/aos/agrovoc/c_28831 http://aims.fao.org/aos/agrovoc/c_6513 |
| url | https://hdl.handle.net/20.500.12324/41302 https://doi.org/10.21930/agrosavia.vigilanciacientifica.2025.3 |
| work_keys_str_mv | AT florezmartinezdiegohernando vigilanciacientificasobreaprovechamientodevinazasgeneradasenlaagroindustriadelacanadeazucarsaccharumofficinarum |