Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali

The cape gooseberry (Physalis peruviana) is a Solanaceae species with enormous economic importance in Colombia; it is the second most exported fruit, after bananas. Vascular wilt caused by Fusarium oxysporum f. sp. physali (Fox) is the most limiting factor of this crop, with losses of up to 80% of...

Descripción completa

Detalles Bibliográficos
Autores principales: García, Diana, Dávila Mora, Liseth Lorena, González, Adriana, Caro Quintero, Alejandro, Cotes Prado, Alba Marina
Formato: article
Lenguaje:Español
Publicado: Universidad Pedagógica y Tecnológica de Colombia - UPTC 2024
Materias:
Acceso en línea:https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/11699
http://hdl.handle.net/20.500.12324/38973
id RepoAGROSAVIA38973
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Plagas de las plantas - H10
Fusarium oxysporum
Uchuva
Control biológico
Marchitamiento
Frutales
http://aims.fao.org/aos/agrovoc/c_16244
http://aims.fao.org/aos/agrovoc/c_3b22c756
http://aims.fao.org/aos/agrovoc/c_918
http://aims.fao.org/aos/agrovoc/c_8390
spellingShingle Plagas de las plantas - H10
Fusarium oxysporum
Uchuva
Control biológico
Marchitamiento
Frutales
http://aims.fao.org/aos/agrovoc/c_16244
http://aims.fao.org/aos/agrovoc/c_3b22c756
http://aims.fao.org/aos/agrovoc/c_918
http://aims.fao.org/aos/agrovoc/c_8390
García, Diana
Dávila Mora, Liseth Lorena
González, Adriana
Caro Quintero, Alejandro
Cotes Prado, Alba Marina
Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali
description The cape gooseberry (Physalis peruviana) is a Solanaceae species with enormous economic importance in Colombia; it is the second most exported fruit, after bananas. Vascular wilt caused by Fusarium oxysporum f. sp. physali (Fox) is the most limiting factor of this crop, with losses of up to 80% of production. Biological control is a promising alternative for controlling this pathogen. Bacteria and fungi, originally isolated from potentially suppressive soils of cape gooseberry crops in Nariño, Colombia with different management (organic and conventional), were evaluated as biocontrol agents of Fox using a gnotobiotic model (seedlings cultured under axenic conditions with defined microbial strains). Of the 64 isolated microorganisms, 37.5% (15 bacteria and 9 fungi) were discarded because of toxicological risks and an unknow potential biological control. The remaining 62.5% of the microorganisms, 14 bacteria and 26 fungi, were evaluated to assess their potential as biological control agents against Fox. The gnotobiotic model system evaluated the protection and plant growth promotion characteristics. Response variables were used to group the microorganism using a principal component analysis (PCA), and five clusters were obtained. Cluster number four concentrated the 10 microorganisms (three bacteria and seven fungi) with the highest protection values against Fox, with a positive effect on growth. The isolates were identified as two Bacillus subtilis strains, Rhodococcus sp., Podospora setosa, Debaryomyces vindobonensis, Plectosphaerella plurivora, Acinetobacter rhizosphaerae, Umbelopsis sp. and two strains of Trichoderma koningiopsis. The gnobiotic system offered clear advantages for evaluating and selecting microorganisms with a biological control potential against Fusarium oxysporum f. sp. physalis.
format article
author García, Diana
Dávila Mora, Liseth Lorena
González, Adriana
Caro Quintero, Alejandro
Cotes Prado, Alba Marina
author_facet García, Diana
Dávila Mora, Liseth Lorena
González, Adriana
Caro Quintero, Alejandro
Cotes Prado, Alba Marina
author_sort García, Diana
title Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali
title_short Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali
title_full Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali
title_fullStr Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali
title_full_unstemmed Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali
title_sort gnotobiotic system for selecting microorganisms with biocontrol potential against fusarium oxysporum f. sp. physali
publisher Universidad Pedagógica y Tecnológica de Colombia - UPTC
publishDate 2024
url https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/11699
http://hdl.handle.net/20.500.12324/38973
work_keys_str_mv AT garciadiana gnotobioticsystemforselectingmicroorganismswithbiocontrolpotentialagainstfusariumoxysporumfspphysali
AT davilamoralisethlorena gnotobioticsystemforselectingmicroorganismswithbiocontrolpotentialagainstfusariumoxysporumfspphysali
AT gonzalezadriana gnotobioticsystemforselectingmicroorganismswithbiocontrolpotentialagainstfusariumoxysporumfspphysali
AT caroquinteroalejandro gnotobioticsystemforselectingmicroorganismswithbiocontrolpotentialagainstfusariumoxysporumfspphysali
AT cotespradoalbamarina gnotobioticsystemforselectingmicroorganismswithbiocontrolpotentialagainstfusariumoxysporumfspphysali
_version_ 1808104862880104448
spelling RepoAGROSAVIA389732024-03-07T03:00:22Z Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali Gnotobiotic system for selecting microorganisms with biocontrol potential against Fusarium oxysporum f. sp. physali García, Diana Dávila Mora, Liseth Lorena González, Adriana Caro Quintero, Alejandro Cotes Prado, Alba Marina Plagas de las plantas - H10 Fusarium oxysporum Uchuva Control biológico Marchitamiento Frutales http://aims.fao.org/aos/agrovoc/c_16244 http://aims.fao.org/aos/agrovoc/c_3b22c756 http://aims.fao.org/aos/agrovoc/c_918 http://aims.fao.org/aos/agrovoc/c_8390 The cape gooseberry (Physalis peruviana) is a Solanaceae species with enormous economic importance in Colombia; it is the second most exported fruit, after bananas. Vascular wilt caused by Fusarium oxysporum f. sp. physali (Fox) is the most limiting factor of this crop, with losses of up to 80% of production. Biological control is a promising alternative for controlling this pathogen. Bacteria and fungi, originally isolated from potentially suppressive soils of cape gooseberry crops in Nariño, Colombia with different management (organic and conventional), were evaluated as biocontrol agents of Fox using a gnotobiotic model (seedlings cultured under axenic conditions with defined microbial strains). Of the 64 isolated microorganisms, 37.5% (15 bacteria and 9 fungi) were discarded because of toxicological risks and an unknow potential biological control. The remaining 62.5% of the microorganisms, 14 bacteria and 26 fungi, were evaluated to assess their potential as biological control agents against Fox. The gnotobiotic model system evaluated the protection and plant growth promotion characteristics. Response variables were used to group the microorganism using a principal component analysis (PCA), and five clusters were obtained. Cluster number four concentrated the 10 microorganisms (three bacteria and seven fungi) with the highest protection values against Fox, with a positive effect on growth. The isolates were identified as two Bacillus subtilis strains, Rhodococcus sp., Podospora setosa, Debaryomyces vindobonensis, Plectosphaerella plurivora, Acinetobacter rhizosphaerae, Umbelopsis sp. and two strains of Trichoderma koningiopsis. The gnobiotic system offered clear advantages for evaluating and selecting microorganisms with a biological control potential against Fusarium oxysporum f. sp. physalis. Uchuva-Physalis peruviana L. 2024-03-06T14:28:34Z 2024-03-06T14:28:34Z 2021 2021 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/11699 2422-3719 http://hdl.handle.net/20.500.12324/38973 10.17584/rcch.2021v15i1.11699 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Revista Colombiana de Ciencias Hortícolas 15 1 1 18 Agronet. 2018. Área, producción y rendimiento nacional por cultivo. In: https://www.agronet.gov.co/estadisti ca/Paginas/home.aspx?cod=1; consulted: April, 20 Akköprü, A. and S. Demir. 2005. Biological control of Fu sarium wilt in tomato caused by Fusarium oxys f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153(9), 544-550. Doi: 10.1111/j.1439-0434.2005.01018.x Anastasiadis, I.A., I.O. Giannakou, D.A. Prophetou-Atha nasiadou, and S.R. Gowen. 2008. The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root knot nematodes. Crop Prot. 27(3-5), 352-361. Doi: 10.1016/j.cropro.2007.06.008 Arrebola, E., R. Jacobs, and L. Korsten. 2010. Iturin: A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108(2), 386-395. Doi: 10.1111/j.1365-2672.2009.04438.x Asaka, O. and M. Shoda. 2002. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62(11), 4081-4085. Doi: 10.1128/aem.62.11.4081-4085.1996 Bais, H.P., R. Fall, and J.M. Vivanco. 2004. Biocontrol of Ba cillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm forma tion and surfactin production. Plant Physiol. 134(1), 307-319. Doi: 10.1104/pp.103.028712 Banaay, C.G.B., C.V. Cuevas, and C.M. Vera. 2012. Tricho derma ghanense promotes plant growth and controls disease caused by Pythium arrhenomanes in seedlings of aerobic rice variety Apo. Philipp. Agric. Scientist 95(2), 175-184. Bayman, P., L.L. Lebron, R.L. Tremblay, and D.J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 135(1), 143-149. Doi: 10.1046/j.1469-8137.1997.00618.x Bennett, R.S., W. O’neill, L. Smith, R.B. Hutmacher, and R.S. Bennett. 2011. Plant pathology and nematology: Activity of commercial detergents against conidia and chlamydospores of Fusarium oxysporum f. sp. vasinfec tum. J. Cotton Sci. 15(2), 162-169. Blankenberg, D., A. Gordon, G. Von Kuster, N. Coraor, J. Taylor, A. Nekrutenko, and G. Team. 2010. Manipu lation of FASTQ data with galaxy. Bioinformatics 26(14), 1783-1785. Doi: 10.1093/bioinformatics/ btq281 1 Bleve, G., F. Grieco, G. Cozzi, A. Logrieco, and A. Viscon ti. 2006. Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. Int. J. Food Microbiol. 108(2), 204-209. Doi: 10.1016/j.ijfoodmicro.2005.12.004 Bubici, G., M. Kaushal, M.I. Prigigallo, C.G.L. Cabanás, and J. Mercado-Blanco. 2019. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 10, 616. Doi: 10.3389/fmicb.2019.00616 Caporaso, J.G., C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, N. Fierer, and R. Kni ght. 2011. Global patterns of 16S rRNA diversit a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108(Suppl. 1), 4516-4522. Doi: 10.1073/pnas.1000080107 Carmarán, C.C. and M.V. Novas. 2003. A review of Spe gazzini taxa of Periconia and Sporocybe after over 115 years. Fungal Divers. 14, 67-76. Carvalho, D.D.C., M. Lobo Junior, I. Martins, P.W. In glis, and S.C.M. Mello. 2014. Biological control of fusarium oxysporum f. sp. phaseoli by Trichoderma har zianum and its use for common bean seed treatment. Trop. Plant Pathol. 39(5), 384-391. Doi: 10.1590/ S1982-56762014000500005 Catara, V. 2007. Pseudomonas corrugata: plant pathogen and/ or biological resource? Mol. Plant Pathol. 8(3), 233- 244. Doi: 10.1111/j.1364-3703.2007.00391.x Chastre, J. 2003. Infections due to Acinetobacter baumannii in the ICU. Semin. Respir. Crit. Care Med. 24(1), 069- 078. Doi: 10.1055/s-2003-37918 Chen, F., Y.B. Guo, J.H. Wang, J.Y. Li, and H.M. Wang. 2007. Biological control of grape crown gall by Rahnella aquatilis HX2. Plant Dis. 91(8), 957-963. Doi: 10.1094/ PDIS-91-8-0957 Chin-A-Woeng, T.F.C., G.V. Bloemberg, and B.J.J. Lugten berg. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157(3), 503-523. Doi: 10.1046/j.1469-8137.2003.00686.x Cotes, A.M., C.A. Moreno-Velandia, C. Espinel, L. Villami zar, and M. Gómez. 2018. Biological control of tomato Fusarium wilt and whiteflies with two fungal biopes ticides. Acta Hortic. 1207, 129-138. Doi: 10.17660/ ActaHortic.2018.1207.17 Creason, A.L., O.M. Vandeputte, E.A. Savory, E.W. II Da vis, M.L. Putnam, E. Hu, D. Swader-Hines, A. Mol, M. Baucher, E. Prinsen, M. Zdanowska, S.A. Givan, M. El Jaziri, J.E. Loper, T. Mahmud, and J.H. Chang. 2014. Analysis of genome sequences from plant pathoge nic Rhodococcus reveals genetic novelties in virulence loci. PLoS ONE 9(7), e101996. Doi: 10.1371/journal. pone.0101996 De Boer Sietske, A. and B. Diderichsen. 1991. On the safe ty of Bacillus subtilis and B. amyloliquefaciens: a review. Appl. Microbiol. Biotechnol. 36(1), 1-4. Doi: 10.1007/ BF00164689 De Hoog, G.S., S.A. Ahmed, M.J. Najafzadeh, D.A. Sutton, M.S. Keisari, A.H. Fahal, U. Eberhardt, G.J. Verkleij, L. Xin, B. Stielow, and W.W.J. van de Sande. 2013. Phylogenetic findings suggest possible new habitat and routes of infection of human eumyctoma. PLoS Negl. Trop. Dis. 7(5), e2229. Doi: 10.1371/journal. pntd.0002229 Deng, W., B.A. Vallance, Y. Li, J.L. Puente, and B.B. Finlay. 2003. Citrobacter rodentium translocated intimin re ceptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colo nic hyperplasia in mice. Mol. Microbiol. 48(1), 95-115. Doi: 10.1046/j.1365-2958.2003.03429.x Di Pietro, A., M. Gut-Rella, J.P. Pachlatko, and F.J. Schwinn. 1992. Role of Antibiotics Produced by Chaetomium glo bosum in biocontrol of Pythium ultimum, a causal agent of damping-off. Phytopathology 82(2), 131. Doi: 10.1094/phyto-82-131 Dorman, H.J.D. and S.G. Deans. 2000. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88(2), 308-316. Doi: 10.1046/j.1365-2672.2000.00969.x Druzhinina, I.S., V. Seidl-Seiboth, A. Herrera-Estrella, B.A. Horwitz, C.M. Kenerley, E. Monte, P.K. Mukherjee, S. Zeilinger, I.V. Grigoriev, and C.P. Kubicek. 2011. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 9(10), 749-759. Doi: 10.1038/ nrmicro2637 El-Tarabily, K.A. 2006. Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can. J. Bot. 84, 211-222. Doi: 10.1139/ B05-153 Enciso-Rodríguez, F.E., C. González, E.A. Rodríguez, C.E. López, D. Landsman, L.S. Barrero, and L. Mariño-Ra mírez. 2013. Identification of immunity related genes to study the Physalis peruviana - Fusarium oxysporum pathosystem. PLoS ONE 8(7), 68500. Doi: 10.1371/ journal.pone.0068500 Eshraghi, L., J.P. Anderson, N. Aryamanesh, J.A. McComb, B. Shearer, and G.E. Giles. 2014. Defence signalling pathways involved in plant resistance and phos phite-mediated control of Phytophthora cinnamomi. Plant Mol. Biol. Rep. 32(2), 342-356. Doi: 10.1007/ s11105-013-0645-5 Felestrino, E.B., I.F. Santiago, L.S. Freitas, L.H. Rosa, S.P. Ri beiro, and L.M. Moreira. 2017. Plant growth promoting bacteria associated with Langsdorffia hypogaea-Rhizos phere-Host biological interface: A neglected model of bacterial prospection. Front. Microbiol. 8, 172. Doi: 10.3389/fmicb.2017.00172 Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: 10.17584/rcch.2020v14i1.10893 Galindo, J.R. and L.M. Pardo. 2010. Uchuva (Physalis peru viana): Producción y manejo poscosecha. Cámara de Comercio, Bogota. Galindo-Flores, H., J.C. Martínez-Álvarez, E. Nava-Pérez, R.S. García-Estrada, and I.E. Maldonado-Mendo za. 2005. A saprotrophic fungal isolate from nor thern Sinaloa, Mexico, with homology to members of the chaetomiaceae behaves as an antagonist of phytopathogenic fungi in vitro. Rev. Mex. Fitopatol. 23(2), 130-139. Gally, T., B.A. González, and F. Pantuso. 2006. Efecto con junto de Fusarium sp. y Phomopsis sp., patógenos trans mitidos por las semillas en plántulas de soja [Glycine max (L.) Merrill]. Rev. Mex. Fitopatol. 24(2), 156-158 Ghelardi, E., F. Celandroni, S. Salvetti, E. Fiscarelli, and S. Senesi. 2007. Bacillus thuringiensis pulmonary infec tion: critical role for bacterial membrane-damaging toxins and host neutrophils. Microb. Infect. 9(5), 591- 598. Doi: 10.1016/j.micinf.2007.02.001 Giraldo-Betancourt, C., E.A. Velandia-Sánchez, G. Fischer, S. Gómez-Caro, and L.-J. Martínez. 2020. Hyperspec tral response of cape gooseberry (Physalis peruviana L.) plants inoculated with Fusarium oxysporum f. sp. phy sali for vascular wilt detection. Rev. Colomb. Cienc. Hortic. 14(3). Doi: 10.17584/rcch.2020v14i3.10938 González, C. and L.S. Barrero. 2011. Estudio de la marchi tez vascular de la uchuva para el mejoramiento genéti co del cultivo. Cámara de Comercio, Bog Grohskopf, L., V. Roth, D. Feikin, M. Arduino, L. Carson, J. Tokars, S.C. Holt, B.J. Jensen, R.E. Hoffman, and W.R. Jarvis. 2001. Serratia liquefaciens bloodstream infec tions from contamination of epoetin alfa at a hemo dialysis center. N. Engl. J. Med. 344, 1491-1497. Doi: 10.1056/nejm200105173442001 Gunther IV, N.W., A. Nuñez, W. Fett, and D.K.Y. Solai man. 2005. Production of rhamnolipids by Pseudomo nas chlororaphis, a nonpathogenic bacterium. Appl. Environ. Microbiol. 71(5), 2288-2293. Doi: 10.1128/ AEM.71.5.2288-2293.2005 Gutiérrez-Luna, F.M., J. López-Bucio, J. Altamirano-Her nández, E. Valencia-Cantero, H.R. De La Cruz, and L. Macías-Rodríguez. 2010. Plant growth-promoting rhi zobacteria modulate root-system architecture in Ara bidopsis thaliana through volatile organic compound emission. Symbiosis 51(1), 75-83. Doi: 10.1007/ s13199-010-0066-2 Gutiérrez, E. 2017. Caracterización de los mecanismos anta gónicos de Debaryomyces hansenii contra Colletotrichum gloersporioides y su efecto en la protección poscosecha en papaya var. Maradol. MSc thesis. Centro de Inves tigaciones Biológicas del Noroeste, La Paz, Mexico. Haglund, W.A. and J.M. Kraft. 2001. Fusarium wilt. In: Compendium of pea diseases and pests. American Phytopathological Society, St. Paul, MN. Handelsman, J., S. Raffel, E.H. Mester, L. Wunderlich, and C.R. Grau. 1990. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56(3), 713-718. Doi: 10.1128/ aem.56.3.713-718.1990 Hassanien, M.F.R. 2011. Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Rev. Int. 27(3), 259-273. Doi: 10.1080/87559129.2011.563391 He, H., L.A. Silo-Suh, J. Handelsman, and J. Clardy. 1994. Zwittermicin A: an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35(16), 2499-2502. Doi: 10.1016/S0040-4039(00)77154-1 Hoppe, J.E., M. Herter, S. Aleksic, T. Klingebiel, and D. Niethammer. 1993. Catheter-related Rahnella aquati lis bacteremia in a pediatric bone marrow transplant recipient. J. Clin. Microbiol. 31(7), 1911-1912. Doi: 10.1128/JCM.31.7.1911-1912.1993 Howell, C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 87(1), 4-10. Doi: 10.1094/PDIS.2003.87.1.4 Huang, P., L. de-Bashan, T. Crocker, J.W. Kloepper, and Y. Bashan. 2017. Evidence that fresh weight measu rement is imprecise for reporting the effect of plant growth-promoting (rhizo)bacteria on growth promo tion of crop plants. Biol. Fert. Soils 53(2), 199-208. Doi: 10.1007/s00374-016-1160-2 Hubbard, J.P., G.E. Harman, and C.J. Eckenrode. 1982. In teraction of a biological control agent, Chaetomium globosum, with seed coat microflora. Can. J. Microbiol. 28(4), 431-437. Doi: 10.1139/m82-065 ICA, Instituto Colombiano Agropecuario. 2020. Fertilizantes y bioinsumos agrícolas. In: https://www. ica.gov.co/getdoc/d3612ebf-a5a6-4702-8d4b-8427c1c daeb1/registros-nacionales-pqua-15-04-09.aspx; con sulted: December, 2020. Indiragandhi, P., R. Anandham, M. Madhaiyan, and T.M. As. 2008. Characterization of plant growth-promo ting traits of bacteria isolated from larval guts of Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56(4), 327-333. Doi: 10.1007/s00284-007-9086-4 Kalbe, C., P. Marten, and G. Berg. 1996. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol. Res. 151(4), 433-439. Doi: 10.1016/S0944-5013(96)80014-0 Kloepper, J.W., F.M. Scher, M. Laliberté, and B. Tipping. 1986. Emergence-promoting rhizobacteria: Des cription and implications for agriculture. pp. 155- 164. In: Swinburne, T.R. (eds.). Iron, siderophores, and plant diseases. NATO ASI Series (Series A: Life Sciences). Vol. 117. Springer, Boston, MA. Doi: 10.1007/978-1-4615-9480-2_17 Köhl, J., R. Kolnaar, and W.J. Ravensberg. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 10, 845. Doi: 10.3389/fpls.2019.00845 Korolev, N., J. Katan, and T. Katan. 2000. Vegetative compatibility groups of Verticillium dahliae in Israel: Their distribution and association with pathogeni city. Phytopathology 90(5), 529-536. Doi: 10.1094/ PHYTO.2000.90.5.529 Kůdela, V., V. Krejzar, and I. Pánková. 2010. Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in Rockwool slab hy droponic culture. Plant Prot. Sci. 46(1), 1-11. Doi: 10.17221/44/2009-PPS Kuhls, K., E. Lieckfeldt, T. Börner, and E. Guého. 1999. Molecular reidentification of human pathogenic Tri choderma isolates as Trichoderma longibrachiatum and Trichoderma citrinoviride. Med. Mycol. 37(1), 25-33. Doi: 10.1046/j.1365-280X.1999.00197.x Kumar, R.M., G. Kaur, A. Kumar, M. Bala, N.K. Singh, N. Kaur, N. Kumar, and S. Mayilraj. 2015. Taxonomic description and genome sequence of Bacillus campisalis sp. nov., a member of the genus Bacillus isolated from a solar saltern. Int. J. Syst. Evol. Microbiol. 65(10), 3235-3240. Doi: 10.1099/ijsem.0.000400 Kurze, S., H. Bahl, R. Dahl, and G. Berg. 2001. Biological control of fungal strawberry diseases by Serratia ply muthica HRO-C48. Plant Dis. 85(5), 529-534. Doi: 10.1094/PDIS.2001.85.5.529 Lagier, J.C., F. Armougom, M. Million, P. Hugon, I. Pag nier, C. Robert, F. Bittar, G. Fournous, G. Gimenez, M. Maraninchi, J.-F. Trape, E.V. Koonin, B. La Sco la, and D. Raoult. 2012. Microbial culturomics: Pa radigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18(12), 1185-1193. Doi: 10.1111/1469-0691.12023 López, J.R., A.L. Diéguez, A. Doce, E. de la Roca, R. de la Herran, J.I. Navas, A.E. Toranzo, and J.L. Romalde. 2012. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Mo reau). Int. J. Syst. Evol. Microb. 62(4), 874-882. Doi: 10.1099/ijs.0.030601-0 Lorito, M., S.L. Wood, M. D’Ambrosio, G.E. Harman, C.K. Hayes, C.P. Kubicek, and F. Scala. 1996. Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Mol. Plant Microbe Interact. 9(3), 206-213. Doi: 10.1094/MPMI-9-0206 Lucy, M., E. Reed, and B.R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86(1), 1-25. Doi: 10.1023/B:ANTO. 0000024903.10757.6e Luongo, L., M. Galli, L. Corazza, E. Meekes, L. De Haas, C.L. Van Der Plas, and J. Köhl. 2005. Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Sci. Techn. 15(3), 229-242. Doi: 10.1080/09583150400016852 Marinho, A.M.R., E. Rodrigues-Filho, M.D.L.R. Moitinho, and L.S. Santos. 2005. Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J. Braz. Chem. Soc. 16(2), 280-283. Doi: 10.1590/ s0103-50532005000200023 Martínez, S.A. and J. Dussán. 2018. Lysinibacillus sphaericus plant growth promoter bacteria and lead phytoreme diation enhancer with Canavalia ensiformis. Environ. Prog. Sustain. Energy 37(1), 276-282. Doi: 10.1002/ ep.12668 Martínez-Medina, A., M. Del Mar Alguacil, J.A. Pascual, and S.C.M. Van Wees. 2014. Phytohormone profi les induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J. Chem. Ecol. 40(7), 804-815. Doi: 10.1007/s10886-014-0478-1 Mayorga-Cubillos, F., J. Arguelles, E. Rodriguez, C. Alma rio, C. Ariza, and L. Barrero. 2019. Yield and physico chemical quality of Physalis peruviana L. fruit related to the resistance response against Fusarium oxysporum f. sp. physali. Agron. Colomb. 37(2), 120-128. Doi: 10.15446/agron.colomb.v37n2.77550 McGovern, R.J. 2015. Management of tomato diseases cau sed by Fusarium oxysporum. Crop Prot. 73, 78-92. Doi: 10.1016/j.cropro.2015.02.021 Melnick, R.L., C. Suárez, B.A. Bailey, and P.A. Backman. 2011. Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biol. Control 57(3), 236-245. Doi: 10.1016/j.biocontrol.2011.03.005 Michielse, C.B. and M. Rep. 2009. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10(3), 311-324. Doi: 10.1111/j.1364-3703.2009.00538.x Moreno, C.A., F. Castillo, A. González, D. Bernal, Y. Jaimes, M. Chaparro, C. González, F. Rodriguez, S. Restrepo, and A.M. Cotes. 2009. Biological and molecular cha racterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol. Mol. Plant Pa thol. 74(2), 111-120. Doi: 10.1016/j.pmpp.2009.10.0 Moreno, C.A., J. Kloepper, M. Ongena, and A.M. Cotes. 2014. Biotic factors involved in biological control acti vity of Bacillus amyloliquefaciens (Bs006) against Fusa rium oxysporum in cape gooseberry (Physalis peruviana). pp. 129-136. In: Pertot, I., D.F. Jensen, M. Hökeberg, M. Karlsson, I. Sundh, and Y. Elad (eds.). Proc. XIII Meeting Biocontrol of Plant Diseases: From the Field to the Laboratory and Back Again. IOBC-WPRS Bull. 115. Zürich Switzerland. Moreno-Limón, S., L.N. González-Solís, S.M. Salcedo-Mar tínez, M.L. Cárdenas-Avila, and A. Perales-Ramírez. 2011. Efecto antifúngico de extractos de goberna dora (Larrea tridentata L.) sobre la inhibición in vitro de Aspergillus flavus y Penicillium sp. Polibotánica 32, 193-205. NRCS, National Resources Conservation Service. 2020. Physalis peruviana L.: Peruvian groundcherry. In: United States Department of Agriculture USDA, https://plants.sc.egov.usda.gov/core/profile?sym bol=PHPE4; consulted: November, 2020. Nicoletti, R., A. Carella, and E. Cozzolino. 2008. Investiga tion on fungal antagonists of root rot agents from the rhizosphere of white lupin (Lupinus albus). Dyn. Soil Dyn. Plant 2(1), 69-72. Opelt, K., V. Chobot, F. Hadacek, S. Schönmann, L. Eberl, and G. Berg. 2007. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ. Microbiol. 9(11), 2795- 2809. Doi: 10.1111/j.1462-2920.2007.01391.x Osburn, R.M., J.L. Milner, E.S. Oplinger, R.S. Smith, and J. Handelsman. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79(6), 551-556. Doi: 10.1094/PD-79-0551 Ownley, B.H., M.R. Griffin, W.E. Klingeman, K.D. Gwinn, J.K. Moulton, and R.M. Pereira. 2008. Beauveria bassia na: Endophytic colonization and plant disease control. J. Invertebr. Pathol. 98(3), 267-270. Doi: 10.1016/j. jip.2008.01.010 Palma-Guerrero, J., H.B. Jansson, J. Salinas, and L.V. Lo pez-Llorca. 2008. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and bio control fungi. J. Appl. Microbiol. 104(2), 541-553. Doi: 10.1111/j.1365-2672.2007.03567.x Pieterse, C.M.J., C. Zamioudis, R.L. Berendsen, D.M. We ller, S.C.M. Van Wees, and P.A.H.M. Bakker. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347-375. Doi: 10.1146/ annurev-phyto-082712-102340 Ploper, L.D., P.A. Backman, C. Stevens, V.A. Khan, and R. Rodriguez-Kábana. 1992. Effects of soil mulch, row cover, and biological and chemical foliar treatments on early blight of tomato. Biol. Cult. Test. 7, 38. Prescott, J.F. 1991. Rhodococcus equi: An animal and hu man pathogen. Clin. Microbiol. Rev. 4(1), 20-34. Doi: 10.1128/CMR.4.1.20 Raaijmakers, J.M. and D.M. Weller. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-produ cing Pseudomonas spp. in Take-all decline soils. Mol. Plant-Microb. Interact. 11(2), 144-152. Doi: 10.1094/ MPMI.1998.11.2.144 Rai, J.N. and V.C. Saxena. 1975. Sclerotial mycoflora and its role in natural biological control of ‘white-rot’ disease. Plant Soil 43(1), 509-513. Doi: 10.1007/BF01928513 Rashid, S., T.C. Charles, and B.R. Glick. 2012. Isolation and characterization of new plant growth-promoting bac terial endophytes. Appl. Soil Ecol. 61, 217-224. Doi: 10.1016/j.apsoil.2011.09.011 Refai, M., H.A. El-Yazid, and W. Tawakkol. 2015. Mono graph on the genus Penicillium. A guide for historical, classification and identification of penicilli, their in dustrial applications and detrimental effects. Cairo University, Cairo. Rete, A. 2011. Caracterización molecular de Streptomyces spp. asociadas a la sarna común y evaluación in vi tro de antagonistas nativos de la rizosfera de papa en Sinaloa. MSc thesis. Instituto Politécnico Nacional, Guasave, Mexico. Rickerts, V., A. Böhme, A. Viertel, G. Behrendt, V. Jacobi, K. Tintelnot, and G. Just-Nübling. 2000. Cluster of pul monary infections caused by Cunninghamella bertho lletiae in immunocompromised patients. Clin. Infect. Dis. 31(4), 910-913. Doi: 10.1086/318144 Rodriguez, E. 2010. Aislamiento y caracterización de cepas de Fusarium oxysporum en uchuva (Physalis peruviana) y evaluación de la patogenicidad en invernadero. Un dergraduate thesis. Universidad de Cundinamaca, Fu sagasuga, Colombia Rodriguez, E. 2010. Aislamiento y caracterización de cepas de Fusarium oxysporum en uchuva (Physalis peruviana) y evaluación de la patogenicidad en invernadero. Un dergraduate thesis. Universidad de Cundinamaca, Fu sagasuga, Colombia Rodríguez, E.A. 2013. Caracterización de aislamientos de Fusarium spp. obtenidos de zonas productoras de uchuva (Physalis peruviana) en Cundinamarca y Bo yacá. MSc tesis. Facultad de Agronomía, Universidad Nacional de Colombia. Bogota. Rodríguez, P., A. Cerda, X. Font, A. Sánchez, and A. Artola. 2019. Valorisation of biowaste digestate through so lid state fermentation to produce biopesticides from Bacillus thuringiensis. Waste Manage. 93, 63-71. Doi: 10.1016/j.wasman.2019.05.026 Rokhbakhsh-Zamin, F., D. Sachdev, N. Kazemi-Pour, A. Engineer, K.R. Pardesi, S. Zinjarde, P.K. Dhakephalk ar, and B.A. Chopade. 2011. Characterization of plant-growth-promoting traits of Acinetobacter spe cies isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21(6), 556-566. Doi: 10.4014/ jmb.1012.12006 Sahebani, N. and N. Hadavi. 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoder ma harzianum. Soil Biol. Biochem. 40(8), 2016-2020. Doi: 10.1016/j.soilbio.2008.03.011 Sandoval-Denis, M., J. Guarro, J.F. Cano-Lira, D.A. Sut ton, N.P. Wiederhold, G.S. de Hoog, S.P. Abbott, C. Decock, L. Sigler, and J. Gené. 2016. Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Stud. Mycol. 83, 193-233. Doi: 10.1016/j.simyco.2016.07.002 Schirmböck, M., M. Lorito, Y.L. Wang, C.K. Hayes, I. Ari san-Atac, F. Scala, G.E. Harman, and C.P. Kubicek. 1994. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mecha nisms involved in the antagonistic action of Trichoder ma harzianum against phytopathogenic fungi. Appl. Environ. Microbiol. 60(12), 4364-4370. Doi: 10.1128/ aem.60.12.4364-4370.1994 Shishido, M., C. Miwa, T. Usami, Y. Amemiya, and K.B. Jo hnson. 2005. Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95(9), 1072-1080. Doi: 10.1094/PHYTO-95-1072 Shoda, M. 2000. Bacterial control of plant diseases. J. Biosci. Bioeng. 89(6), 515-521. Doi: 10.1016/ S1389-1723(00)80049-3 Siegel-Hertz, K., V. Edel-Hermann, E. Chapelle, S. Terrat, J.M. Raaijmakers, and C. Steinberg. 2018. Compara tive microbiome analysis of a Fusarium wilt suppres sive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Front. Microbiol. 9, 568. Doi: 10.3389/fmicb.2018.00568 Singh, R.K., D.P. Kumar, P. Singh, M.K. Solanki, S. Srivasta va, P.L. Kashyap, S. Kumar, A.K. Srivastava, P.K. Sin ghal, and D.K. Arora. 2014. Multifarious plant growth promoting characteristics of chickpea rhizosphere as sociated Bacilli help to suppress soil-borne pathogens. Plant Growth Regulation, 73(1), 91-101. Doi: 10.1007/ s10725-013-9870-z Singh, N.P., R.K. Singh, V.S. Meena, and R.K. Meena. 2015. Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1), 86-99. Doi: 10.5958/2229-4473.2015.00012.9 Smith, A. 2012. Reconocimiento de las enfermedades y pla gas en el cultivo de uchuva. pp. 9-12. In: Días, A. (ed.). Avances en el manejo y control de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). Corpoica, Bogota, DC. Sobita, S. and A. Anamika. 2011. Agro-based waste pro ducts as a substrate for mass production of Trichoderma spp. J. Agric. Sci. 3(4), 168-171. 10.5539/jas.v3n4p168 Spencer, R.C. 2003. Bacillus anthracis. J. Clin. Pathol. 56(3), 182-187. Doi: 10.1136/jcp.56.3.182 Szaniszlo, P.J. and J.L. Harris (eds.). 1985. Fungal di morphism: With emphasis on fungi pathoge nic for humans. Springer, Boston, MA. Doi: 10.1007/978-1-4684-4982-2 Tena, D., C. Fernández, and M.R. Lago. 2015. Alcaligenes faecalis: An unusual cause of skin and soft tissue infec tion. Jap. J. Infect. Dis. 68(2), 128-130. Doi: 10.7883/ yoken.JJID.2014.164 Toju, H., A.S. Tanabe, S. Yamamoto, and H. Sato. 2012. High-coverage ITS primers for the DNA-based iden tification of Ascomycetes and Basidiomycetes in en vironmental samples. PLoS ONE 7(7), e40863. Doi: 10.1371/journal.pone.0040863 Toloza-Moreno, D.L., L.M. Lizarazo-Forero, and D. Uri be-Vélez. 2020. Antagonist capacity of bacteria isolated from cape gooseberry cultures (Physalis pe ruviana L.) for biological control of Fusarium oxys porum. Trop. Plant Pathol. 45(1), 1-12. Doi: 10.1007/ s40858-019-00313-z Urrea, R., L. Cabezas, R. Sierra, M. Cárdenas, S. Restrepo, and P. Jiménez. 2011. Selection of antagonistic bacte ria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. J. Appl. Microbiol. 111(3), 707-716. Doi: 10.1111/j.1365-2672.2011.05092.x Velivelli, S.L.S., P. Kromann, P. Lojan, M. Rojas, J. Franco, J.P. Suarez, and B.D. Prestwich. 2015. Identification of mVOCs from andean rhizobacteria and field evalua tion of bacterial and mycorrhizal inoculants on grow th of potato in its center of origin. Microbiol. Ecol. 69(3), 652-667. Doi: 10.1007/s00248-014-0514-2 Verma, P.S. and C.C. Allison. 1970. Possible modification of susceptibility of tomato to Fusarium wilt by a Chaeto mium sp. Phytopathology 60, 1318 Villarreal-Navarrete, A., G. Fischer, L.M. Melgarejo, G. Correa, and L. Hoyos-Carvajal. 2017. Growth res ponse of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum in fection. Acta Hortic. 1178, 161-168. Doi: 10.17660/ ActaHortic.2017.1178.28 Von Der Weid, I., D.S. Alviano, A.L.S. Santos, R.M.A. Soares, C.S. Alviano, and L. Seldin. 2003. Antimicro bial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95(5), 1143-1151. Doi: 10.1046/j.1365-2672.2003.02097.x Xu, L., S. Ravnskov, J. Larsen, R.H. Nilsson, and M. Nico laisen. 2012. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol. Biochem. 46, 26-32. Doi: 10.1016/j.soilbio.2011.11.010 Zacky, F.A. and A.S.Y. Ting. 2013. Investigating the bioac tivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biol. Control 66(3), 204-208. Doi: 10.1016/j. biocontrol.2013.06.001 Zahid, M., M. Kaleem Abbasi, S. Hameed, and N. Rahim. 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan re gion of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front. Microbiol. 6, 207. Doi: 10.3389/fmicb.2015.00207 Zhang, X., P.R. Harvey, B.E. Stummer, R.A. Warren, G. Zhang, K. Guo, J. Li, and H. Yang. 2015. Antibiosis functions during interactions of Trichoderma afrohar zianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium. Funct. Integr. Genomics 15, 599-610. Doi: 10.1007/s10142-015-0456-x Zhao, S., D. Liu, N. Ling, F. Chen, W. Fang, and Q. Shen. 2014. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil. Biol. Fertil. Soils 50(5), 765-774. Doi: 10.1007/s00374-014-0898-7 Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ application/pdf application/pdf Colombia Universidad Pedagógica y Tecnológica de Colombia - UPTC Bogotá (Colombia) Revista Colombiana de Ciencias Hortícolas; Vol. 15, Núm. 1 (2021): Revista Colombiana de Ciencias Hortícolas;p. 1 -18.