Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes

The cape gooseberry, Physalis peruviana L., is a crop that is transitioning from a semi-wild rural food source to becoming an international export commodity fruit deserving of greater attention from the scientific community, producers, policy makers, and opinion makers. Despite its importance, the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Florez, Viviana, Liberato Guio, Sara Alejandra, Sanchez Betancourt, Erika, Garcia Arias, Francy Liliana, Nuñez Zarantes, Victor Manuel
Formato: article
Lenguaje:Inglés
Publicado: Published by Firenze University Press 2024
Materias:
Acceso en línea:https://riviste.fupress.net/index.php/caryologia/article/view/1081
http://hdl.handle.net/20.500.12324/38932
id RepoAGROSAVIA38932
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Genética vegetal y fitomejoramiento - F30
Uchuva
Análisis histocitológico
Germoplasma
Reproducción
Frutales
http://aims.fao.org/aos/agrovoc/c_3b22c756
http://aims.fao.org/aos/agrovoc/c_27541
http://aims.fao.org/aos/agrovoc/c_3249
http://aims.fao.org/aos/agrovoc/c_6507
spellingShingle Genética vegetal y fitomejoramiento - F30
Uchuva
Análisis histocitológico
Germoplasma
Reproducción
Frutales
http://aims.fao.org/aos/agrovoc/c_3b22c756
http://aims.fao.org/aos/agrovoc/c_27541
http://aims.fao.org/aos/agrovoc/c_3249
http://aims.fao.org/aos/agrovoc/c_6507
Florez, Viviana
Liberato Guio, Sara Alejandra
Sanchez Betancourt, Erika
Garcia Arias, Francy Liliana
Nuñez Zarantes, Victor Manuel
Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes
description The cape gooseberry, Physalis peruviana L., is a crop that is transitioning from a semi-wild rural food source to becoming an international export commodity fruit deserving of greater attention from the scientific community, producers, policy makers, and opinion makers. Despite its importance, the crop has serious technological development challenges, mainly associated with the limited supply of genetically improved materials for producers and consumers. To bridge this gap, the present study determined the level of ploidy of 100 genotypes of cape gooseberry from a working collection by counting the number of chromosomes and chloroplasts, to include them in the breeding program. The number of chromosomes in dividing cells of root-tip meristems, as well as the number of chloroplasts per guard cell, from plants grown under in vitro and ex vitro conditions were determined. Haploid with 24 chromosomes, doubled haploid, tetraploid with 48 chromosomes, aneuploid (44 and 49 chromosomes), and mixoploid genotypes with 36 to 86 chromosomes were found. The number of chloroplasts per guard cell ranged from 4-8, 6-16, 7-16 and 9-21 for the haploid, aneuploid, doubled haploid-tetraploid, and mixoploid genotypes, respectively. The results showed evidence of a high cytogenetic diversity in the evaluated genotypes.
format article
author Florez, Viviana
Liberato Guio, Sara Alejandra
Sanchez Betancourt, Erika
Garcia Arias, Francy Liliana
Nuñez Zarantes, Victor Manuel
author_facet Florez, Viviana
Liberato Guio, Sara Alejandra
Sanchez Betancourt, Erika
Garcia Arias, Francy Liliana
Nuñez Zarantes, Victor Manuel
author_sort Florez, Viviana
title Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes
title_short Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes
title_full Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes
title_fullStr Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes
title_full_unstemmed Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes
title_sort cytogenetic and cytological analysis of colombian cape gooseberry genetic material for breeding purposes
publisher Published by Firenze University Press
publishDate 2024
url https://riviste.fupress.net/index.php/caryologia/article/view/1081
http://hdl.handle.net/20.500.12324/38932
work_keys_str_mv AT florezviviana cytogeneticandcytologicalanalysisofcolombiancapegooseberrygeneticmaterialforbreedingpurposes
AT liberatoguiosaraalejandra cytogeneticandcytologicalanalysisofcolombiancapegooseberrygeneticmaterialforbreedingpurposes
AT sanchezbetancourterika cytogeneticandcytologicalanalysisofcolombiancapegooseberrygeneticmaterialforbreedingpurposes
AT garciaariasfrancyliliana cytogeneticandcytologicalanalysisofcolombiancapegooseberrygeneticmaterialforbreedingpurposes
AT nunezzarantesvictormanuel cytogeneticandcytologicalanalysisofcolombiancapegooseberrygeneticmaterialforbreedingpurposes
_version_ 1808107014491996160
spelling RepoAGROSAVIA389322024-02-23T03:01:55Z Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes Florez, Viviana Liberato Guio, Sara Alejandra Sanchez Betancourt, Erika Garcia Arias, Francy Liliana Nuñez Zarantes, Victor Manuel Genética vegetal y fitomejoramiento - F30 Uchuva Análisis histocitológico Germoplasma Reproducción Frutales http://aims.fao.org/aos/agrovoc/c_3b22c756 http://aims.fao.org/aos/agrovoc/c_27541 http://aims.fao.org/aos/agrovoc/c_3249 http://aims.fao.org/aos/agrovoc/c_6507 The cape gooseberry, Physalis peruviana L., is a crop that is transitioning from a semi-wild rural food source to becoming an international export commodity fruit deserving of greater attention from the scientific community, producers, policy makers, and opinion makers. Despite its importance, the crop has serious technological development challenges, mainly associated with the limited supply of genetically improved materials for producers and consumers. To bridge this gap, the present study determined the level of ploidy of 100 genotypes of cape gooseberry from a working collection by counting the number of chromosomes and chloroplasts, to include them in the breeding program. The number of chromosomes in dividing cells of root-tip meristems, as well as the number of chloroplasts per guard cell, from plants grown under in vitro and ex vitro conditions were determined. Haploid with 24 chromosomes, doubled haploid, tetraploid with 48 chromosomes, aneuploid (44 and 49 chromosomes), and mixoploid genotypes with 36 to 86 chromosomes were found. The number of chloroplasts per guard cell ranged from 4-8, 6-16, 7-16 and 9-21 for the haploid, aneuploid, doubled haploid-tetraploid, and mixoploid genotypes, respectively. The results showed evidence of a high cytogenetic diversity in the evaluated genotypes. Uchuva-Physalis peruviana L. 2024-02-22T20:59:58Z 2024-02-22T20:59:58Z 2021-12-21 2021 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://riviste.fupress.net/index.php/caryologia/article/view/1081 2165-5391 http://hdl.handle.net/20.500.12324/38932 10.36253/caryologia-1081 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Caryologia 74 3 21 30 Agronet (2019). Reportes Estadísticos. Available at: http:// www.agronet.gov.co/estadistica/Paginas/default.aspx. ANALDEX (2019). Comportamiento De Las Exporta ciones Arcobelli, G., Machado, A., Damasceno, S., Carvalho, C. R., and Clarindo, W. R. (2014). In vitro poly ploidization in solanum lycopersicum mill. “Santa Cruz Kada Gigante.” Cytologia (Tokyo). 79, 351–358. doi:10.1508/cytologia.79.351. Azeez, O., and Faluyi, J. (2019). Karyotypic studies of four Physalis species from Nigeria. Acta Botanica Hungarica 61(1–2), 5–9. DOI: 10.1556/034.61.2019.1- 2.2 Azeez, S., Faluyi, J., and Oziegbe, M. (2019). Cytological, foliar epidermal and pollen grain studies in relation to ploidy levels in four species of Physalis L. (Sola naceae) from Nigeria. Int. J. Biol. Chem. Sci. 13(4): 1960-1968. August. Bala, S., and Gupta, R. C. (2011). Effect of secondary associations on meiosis, pollen fertility and pollen size in cape gooseberry (Physalis peruviana L.). Chro mosom. Bot. 6, 25–28. doi:10.3199/iscb.6.2 Berdugo, J., Rodríguez, F., González, C., and Barrero, L. (2015). Variabilidad genética de parentales y pobla ciones F1 inter e intraespecíficas de Physalis peruvi ana L. y P. floridana Rydb . Rev. Bras. Frutic. 37, 179– 192. doi:http://dx.doi.org/10.1590/0100-2945-002/14. Bracamonte, O., Guevara, M., González, R., Cox, E., Siles, M., and E, M. (1997). Estudio citogenético de Physa lis peruviana “capulí de la costa.” Rev. Univ. Nac. San Marcos. Available at: www.unmsm.edu.pe/biologia. Carbajal, Y. (2018). Caracterización citogenética de tres ecotipos de Physalis peruviana “Aguaymanto” Carbajal, Y. (2018). Caracterización citogenética de tres ecotipos de Physalis peruviana “Aguaymanto” Cotes, A., Jiménez, P., Rodríguez, M., Díaz, A., Zapata, J., Gomez, M., et al. (2012). Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). , ed. A. Díaz Bogotá, Colombia: Corporación Colombiana de investigación Agropecuaria - Corpoica. Escobar-Guzmán, R., Hernández-Godínez, F., Martínez, O., and Ochoa-Alejo, N. (2009) In vitro embryo for mation and plant regeneration from anther culture of different cultivars of Mexican husk tomato (Physalis ixocarpa Brot.). Plant Cell, Tissue and Organ Culture. 96: 181–189. Franco, C. (2012). Número de cloroplastos y características morfológicas del fruto en ecotipos de uchuva (Physalis peruviana L.) Colombia, Kenia y Perú. Thesis. Ganapathi, A., Sudhakaran, S., and Kulothungan, S. (1991). The Diploid Taxon in Indian Natural Popula tions of Physalis L. and its Taxonomic Significance. Cytologia (Tokyo). 56, 283–288. doi:10.1508/cytolo gia.56.283. García-Arias, F. L., Osorio-Guarín, J. A., and Núñez Zarantes, V. M. (2018a). Association Study Reveals Novel Genes Related to Yield and Quality of Fruit in Cape Gooseberry (Physalis peruviana L.). Front. Plant Sci. 9, 1–16. doi:10.3389/fpls.2018.00362. García-Arias, F., Sánchez-Betancourt, E., and Núñez, V. (2018b). Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L .). Agron. Colomb. 36, 201–209. doi:10.15446/agron. colomb.v36n3.73108. Germanà, M. (2011). Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult. 104, 283–300. doi:10.1007/s11240-010-9852-z. Gupta, S. K., and Roy, S. K. (1985). Comparison of mei otic abnormalities induced by gamma-rays between a diploid and a tetraploid species of physalis. Cytologia (Tokyo). 50, 167–175. Available at: http://inis.iaea.org/ search/search.aspx?orig_q=RN:17054590. Koutoulis, A., Roy, A., Price, A., Sherriff, L., and Leggett, G. (2005). DNA ploidy level of colchicine-treated hops (Humulus lupulus L.). Sci. Hortic. (Amsterdam). 105, 263–268. Available at: https://eurekamag.com/ research/004/094/004094715.php. Lagos, T. (2006). Biología reproductiva, citogenética, diversidad genética y heterosis en parentales de uvilla o uchuva Physalis peruviana L. Laguado, J. (2007). Aplicaciones de la citometría de flujo en microbiología, veterinaria y agricultura. Rev. MVZ Córdoba 12, 1077–1095. Available at: https://www. redalyc.org/articulo.oa?id=69312215. Liberato, S., Sánchez-Betancourt, E., Argüelles, J., González, C., Núñez, V., and Barrero, L. S. (2014). Cytogenetic of Physalis peruviana L., and Physalis floridana Rydb. Genotypes with differential response to Fusarium oxysporum. Corpoica Cienc. Tecnol. Agropecu. 15, 51–61. doi:10.21930/rcta.vol15_num1_art:396. Menzel, M. (1951). The Cytotaxonomy and Genetics of Physalis. Proc. Am. Philos. Soc. 95, 132–183. Available at: http://www.jstor.org/stable/3143331. Moriconi, D., Rush, M., and Flórez, H. (1990). Tomatillo: una cosecha vegetal potencial para Luisiana. Avances en cosechas nuevas. Prensa la Madera, 407–413. Murashige, T., and Skoog, F. (1962). A Revised Medi um for Rapid Growth and Bio Assays with Tobac co Tissue Cultures. Physiol. Plant. 15, 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x. Núñez, V., Sánchez-Betancourt, E., Mayorga, F., Navas, A., and Gómez, L. (2016a). Corpoica Andina. Variedad de uchuva para Boyacá, Cundinamarca, Antioquia y Nariño. Mosquera, Cundinamarca Available at: https:// repository.agrosavia.co/handle/20.500.12324/11528. Núñez, V., Sánchez-Betancourt, E., Mayorga, F., Navas, A., and Gómez, L. (2016b). Corpoica Dorada. Varie dad de uchuva para Boyacá, Cundinamarca y Antio quia. Mosquera, Cundinamarca Available at: https:// repository.agrosavia.co/handle/20.500.12324/11565. Ochatt, S., Patat-Ochatt, E., Moessner A. (2011). Ploidy level determination within the context of in vitro breeding. Plant Cell Tiss Organ Cult 104:329–341. DOI 10.1007/s11240-011-9918-6 Orrillo, M., and Bonierbale, M. (2009). Biología repro ductiva y citogenética de la papa. Int. Potato Center, Lima, 1–44. Available at: https://research.cip.cgiar. org/confluence/download/attachments/14942278/ Manual_Citologia_2009-04-17+B.pdf Ortiz, R., Ulburghs, F., and Ukoro, J. (1998). Seasonal Variation of Apparent Male Fertility and 2n Pollen Production in Plantain and Banana. Hortic. Sci. 33, 146–148. Poggio, L., and Naranjo, C. (2004). “II. Capítulo 5 Cit ogenética,” in Biotecnología y Mejoramiento Vegetal, eds. V. Echenique, C. Rubinstein, and L. Mroginski (Buenos Aires, Argentina: Ediciones INTA), 69–79 PROCOLOMBIA (2020). Exportaciones - Uchuva. Rodríguez, N., and Bueno, M. (2006). Study of the cytogenetic diversity of Physalis peruviana L. (Sola naceae). Acta Biológica Colomb. 11, 75–85. Available at: http://www.scielo.org.co/scielo.php?script=sci_ arttext&pid=S0120-548X2006000200006 Sánchez, E. (2014). Nivel de ploidía de plantas de uchuva provenientes de cultivo de anteras. Master’s Thesis. Available at: http://bdigital.unal.edu.co/44370/. Serrato-Cruz, M., Hernández-Rodríguez, M., Savidan, Y., and Bárcenas-Ortega, N. (2000). Determinación de la ploidía en progenies de Tagetes spp. mediante cit ómetro de flujo. Agrociencia 34, 735–740 Trevisani, N., Melo, R. C. de, Oliveira, P. M., Porto, M., Meirelles, J. L., and Guidolin, A. F. (2018). Ploidy and DNA content of cape gooseberry populations grown in southern Brazil. Caryologia 71, 414–419. doi:10.10 80/00087114.2018.1494440 Udall, J. A., and Wendel, J. F. (2006). Polyploidy and crop improvement. Crop Science, 46 (Supplement 1), S-3. Vilmorin, R., and Simonet, M. (1928). Recherches sur le nombre des chromosomes chez les solanées. Kong. Ver erbungswiss, Verhandl. Yamamoto, K., and Sakai, K. (1932). On the chromosome number in some Solanaceae. Jpn J Genet 8, 27–33. doi:10.1266/jjg.8.27. Zagorska, N. A., Shtereva, L. A., Kruleva, M. M., Sotiro va, V. G., Baralieva, D. L., and Dimitrov, B. D. (2004). Induced androgenesis in tomato (Lycopersicon escu lentum Mill.). III. Characterization of the regener ants. Plant Cell Rep. 22, 449–456. doi:10.1007/s00299- 003-0720-8 Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ application/pdf application/pdf Colombia Published by Firenze University Press Oxford (Inglaterra) Caryologia; Vol. 74, Núm. 3 (2021): Caryologia (Diciembre);p. 21 -30.