Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production
Integrating diverse data sources for site-specific management zones (SSMZ) in precision agriculture is a complex task. Soil surveys using apparent electrical conductivity (ECa) have proven effective in capturing field variability. However, relying solely on one sensing data type may not fully ca...
Autores principales: | Chaali, Nesrine, Ramírez Gomez, Carlos Manuel, Jaramillo Barrios, Camilo Ignacio, Garr´e, Sarah, Barrero, Oscar, Ouazaa, Sofiane, Calderon Carvajal, John Edinson |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Elsevier
2025
|
Materias: | |
Acceso en línea: | https://www-sciencedirect-com.recursos.agrosavia.co/science/article/pii/S2772375524002405?via%3Dihub http://hdl.handle.net/20.500.12324/41165 https://doi.org/10.1016/j.atech.2024.100635 |
Ejemplares similares
-
Assessment of Spatial Variability of Soil Properties Using Different Methods to Identify Management Zones for Rotational Cropping Systems: A Case Study from Colombia
por: Ouazaa, Sofiane, et al.
Publicado: (2024) -
Informe anual 2007-2008
Publicado: (2007) -
Informe anual 2019: Centro de Investigación el Nus, Centro de Investigación la Selva, Sede Eje Cafetero
Publicado: (2021) -
Conclusiones del 1er. congreso nacional de usuarios campesinos.
Publicado: (2020) -
Plan de acción 2001-2002: plan cuatrienal de protección sanitaria agropecuaria 1999 - 2002
Publicado: (2018)