Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production
Integrating diverse data sources for site-specific management zones (SSMZ) in precision agriculture is a complex task. Soil surveys using apparent electrical conductivity (ECa) have proven effective in capturing field variability. However, relying solely on one sensing data type may not fully ca...
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Elsevier
2025
|
Materias: | |
Acceso en línea: | https://www-sciencedirect-com.recursos.agrosavia.co/science/article/pii/S2772375524002405?via%3Dihub http://hdl.handle.net/20.500.12324/41165 https://doi.org/10.1016/j.atech.2024.100635 |
id |
RepoAGROSAVIA41165 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Investigación agropecuaria - A50 Oryza sativa Producción Población agraria Gestión Transitorios http://aims.fao.org/aos/agrovoc/c_5438 http://aims.fao.org/aos/agrovoc/c_6200 http://aims.fao.org/aos/agrovoc/c_8676 http://aims.fao.org/aos/agrovoc/c_16086 |
spellingShingle |
Investigación agropecuaria - A50 Oryza sativa Producción Población agraria Gestión Transitorios http://aims.fao.org/aos/agrovoc/c_5438 http://aims.fao.org/aos/agrovoc/c_6200 http://aims.fao.org/aos/agrovoc/c_8676 http://aims.fao.org/aos/agrovoc/c_16086 Chaali, Nesrine Ramírez Gomez, Carlos Manuel Jaramillo Barrios, Camilo Ignacio Garr´e, Sarah Barrero, Oscar Ouazaa, Sofiane Calderon Carvajal, John Edinson Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production |
description |
Integrating diverse data sources for site-specific management zones (SSMZ) in precision agriculture is a complex
task. Soil surveys using apparent electrical conductivity (ECa) have proven effective in capturing field variability.
However, relying solely on one sensing data type may not fully capture the intricate relationship between soil
properties and crop physiological processes. This research assessed the effectiveness of applying multivariate
geostatistical analysis and unsupervised machine learning (UML) to geophysical and multispectral data through
ECa, NDWI and NDVI indices, for delineating and validating the SSMZ at different crop cycles in five rice field of
Tolima department-Colombia. Lee´s correlation was conducted between ECa, NDWI and NDVI data. MULTISPATI PCA was used to assess the autocorrelation in the input variables before SSMZ delineation. The correlation results
revealed two field categories based on the direct or indirect relationship between ECa and the multispectral data.
On one hand, ECa values showed an inverse correlation (p < 0.01) with multispectral data (-0.25 to -0.45) for
fields 1a
, 1b and 4a
. On the other hand, there was a direct correlation (p < 0.01) between ECa and multispectral
data (0.31 to 0.51) for fields 2b and 5a
. For all rice fields, MULTISPATI-PCA explained a range between 75.01 %
to 95.64 % of the total variability. UML results highlighted two, three and four SSMZ, with two SSMZ being the
optimal management zones number. The validation suggests that the θ data showed a significant statistical
difference for two SSMZs (p < 0.05), regardless of the water content ranges. This study emphasized the
importance of integrating geophysical and multispectral datasets in precision agriculture for evaluating field
variability and crop conditions. |
format |
article |
author |
Chaali, Nesrine Ramírez Gomez, Carlos Manuel Jaramillo Barrios, Camilo Ignacio Garr´e, Sarah Barrero, Oscar Ouazaa, Sofiane Calderon Carvajal, John Edinson |
author_facet |
Chaali, Nesrine Ramírez Gomez, Carlos Manuel Jaramillo Barrios, Camilo Ignacio Garr´e, Sarah Barrero, Oscar Ouazaa, Sofiane Calderon Carvajal, John Edinson |
author_sort |
Chaali, Nesrine |
title |
Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production |
title_short |
Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production |
title_full |
Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production |
title_fullStr |
Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production |
title_full_unstemmed |
Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production |
title_sort |
enhancing irrigation management: unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production |
publisher |
Elsevier |
publishDate |
2025 |
url |
https://www-sciencedirect-com.recursos.agrosavia.co/science/article/pii/S2772375524002405?via%3Dihub http://hdl.handle.net/20.500.12324/41165 https://doi.org/10.1016/j.atech.2024.100635 |
work_keys_str_mv |
AT chaalinesrine enhancingirrigationmanagementunsupervisedmachinelearningcoupledwithgeophysicalandmultispectraldataforinformeddecisionmakinginriceproduction AT ramirezgomezcarlosmanuel enhancingirrigationmanagementunsupervisedmachinelearningcoupledwithgeophysicalandmultispectraldataforinformeddecisionmakinginriceproduction AT jaramillobarrioscamiloignacio enhancingirrigationmanagementunsupervisedmachinelearningcoupledwithgeophysicalandmultispectraldataforinformeddecisionmakinginriceproduction AT garresarah enhancingirrigationmanagementunsupervisedmachinelearningcoupledwithgeophysicalandmultispectraldataforinformeddecisionmakinginriceproduction AT barrerooscar enhancingirrigationmanagementunsupervisedmachinelearningcoupledwithgeophysicalandmultispectraldataforinformeddecisionmakinginriceproduction AT ouazaasofiane enhancingirrigationmanagementunsupervisedmachinelearningcoupledwithgeophysicalandmultispectraldataforinformeddecisionmakinginriceproduction AT calderoncarvajaljohnedinson enhancingirrigationmanagementunsupervisedmachinelearningcoupledwithgeophysicalandmultispectraldataforinformeddecisionmakinginriceproduction |
_version_ |
1842255852696764416 |
spelling |
RepoAGROSAVIA411652025-08-30T03:01:16Z Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production Chaali, Nesrine Ramírez Gomez, Carlos Manuel Jaramillo Barrios, Camilo Ignacio Garr´e, Sarah Barrero, Oscar Ouazaa, Sofiane Calderon Carvajal, John Edinson Investigación agropecuaria - A50 Oryza sativa Producción Población agraria Gestión Transitorios http://aims.fao.org/aos/agrovoc/c_5438 http://aims.fao.org/aos/agrovoc/c_6200 http://aims.fao.org/aos/agrovoc/c_8676 http://aims.fao.org/aos/agrovoc/c_16086 Integrating diverse data sources for site-specific management zones (SSMZ) in precision agriculture is a complex task. Soil surveys using apparent electrical conductivity (ECa) have proven effective in capturing field variability. However, relying solely on one sensing data type may not fully capture the intricate relationship between soil properties and crop physiological processes. This research assessed the effectiveness of applying multivariate geostatistical analysis and unsupervised machine learning (UML) to geophysical and multispectral data through ECa, NDWI and NDVI indices, for delineating and validating the SSMZ at different crop cycles in five rice field of Tolima department-Colombia. Lee´s correlation was conducted between ECa, NDWI and NDVI data. MULTISPATI PCA was used to assess the autocorrelation in the input variables before SSMZ delineation. The correlation results revealed two field categories based on the direct or indirect relationship between ECa and the multispectral data. On one hand, ECa values showed an inverse correlation (p < 0.01) with multispectral data (-0.25 to -0.45) for fields 1a , 1b and 4a . On the other hand, there was a direct correlation (p < 0.01) between ECa and multispectral data (0.31 to 0.51) for fields 2b and 5a . For all rice fields, MULTISPATI-PCA explained a range between 75.01 % to 95.64 % of the total variability. UML results highlighted two, three and four SSMZ, with two SSMZ being the optimal management zones number. The validation suggests that the θ data showed a significant statistical difference for two SSMZs (p < 0.05), regardless of the water content ranges. This study emphasized the importance of integrating geophysical and multispectral datasets in precision agriculture for evaluating field variability and crop conditions. Arroz-Oryza sativa 2025-08-29T20:54:46Z 2025-08-29T20:54:46Z 2024-12 2024 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www-sciencedirect-com.recursos.agrosavia.co/science/article/pii/S2772375524002405?via%3Dihub 2772-3755 http://hdl.handle.net/20.500.12324/41165 https://doi.org/10.1016/j.atech.2024.100635 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Smart Agricultural Technology 9 1 1 20 J. Munz, I. Maurmann, H. Schuele, R. Doluschitz, Digital transformation at what cost? A case study from Germany estimating the adoption potential of precision farming technologies under different scenarios, Smart Agric. Technol. (2024) 100585, https://doi.org/10.1016/j.atech.2024.100585. R. Abbasi, P. Martinez, R. Ahmad, The digitization of agricultural industry–a systematic literature review on agriculture 4.0, Smart Agric. Technol. 2 (2022) 100042, https://doi.org/10.1016/j.atech.2022.100042. W.K. Mok, Y.X. Tan, W.N. Chen, Technology innovations for food security in Singapore: a case study of future food systems for an increasingly natural resource-scarce world, Trends Food Sci. Technol. 102 (2020) 155–168, https:// doi.org/10.1016/j.tifs.2020.06.013. M. Ceron-Mu ´ noz, ˜ D. Barrios, Agricultura de precision: ´ una contribucion ´ a la gestion ´ de los agronegocios desde la modelacion ´ (Precision agriculture: a contribution to agribusiness management from modeling), Rev. Colomb. Cienc. Pecu. 32 (2019) 7–13, https://doi.org/10.17533/udea.rccp.340326. J.B. Pamplona, M.A.R Silva, Adoçao ˜ da agricultura de precis˜ ao na Am´erica do Sul: o estado da arte em Argentina, Brasil e Colombia, ˆ Gest. Reg. (105) (2019) 35, https://doi.org/10.13037/gr.vol35n105.5555. M.D. Baumann, Examining land rental markets’ linkages to land and water control in Colombia’s irrigation megaprojects: integrating the political economy of agrarian change and the political ecology of vulnerability, J. Peasant. Stud. 50 (5) (2023) 1975–2001, https://doi.org/10.1080/03066150.2022.2082961. E.A. Abioye, O. Hensel, T.J. Esau, O. Elijah, M.S.Z. Abidin, A. Nasirahmadi, Precision irrigation management using machine learning and digital farming solutions, AgriEngineering 4 (1) (2022) 70–103, https://doi.org/10.3390/ agriengineering4010006. S. Ouazaa, C.I. Jaramillo-Barrios, N. Chaali, Y.M.Q. Amaya, J.E.C. Carvajal, O. M. Ramos, Towards site specific management zones delineation in rotational cropping system: application of multivariate spatial clustering model based on soil properties, Geoderma Reg. 30 (2022) e00564, https://doi.org/10.1016/j. geodrs.2022.e00564. A. Kaune, M. Werner, E. Rodríguez, P. Karimi, C. De Fraiture, A novel tool to assess available hydrological information and the occurrence of sub-optimal water allocation decisions in large irrigation districts, Agric. Water. Manage 191 (2017) 229–238, https://doi.org/10.1016/j.agwat.2017.06.013. Leveri Amaya, F., & Pascual-Aguilar, J. (2019). Caracterizacion ´ hidrologica ´ de la cuenca del río Coello (departamento del Tolima, Colombia) con el programa Hydro-BID. (Hydrological characterization of the Coello river basin (Tolima department, Colombia) with the Hydro-BID program.) Escenarios de Cambio Climatico ´ en Colombia y Uruguay. Explorando el modelo hidrologico ´ HYDROBID, 1. Last accessed [20 June 2024] http://hdl.handle.net/10017/41873 C. Barrios-Perez, K. Okada, G.G. Varon, ´ J. Ramirez-Villegas, M.C. Rebolledo, S. D. Prager, How does El Nino ˜ Southern oscillation affect rice-producing environments in central Colombia? Agric. For. Meteorol. 306 (2021) 108443 https://doi.org/10.1016/j.agrformet.2021.108443. S.M. Pedersen, K.M Lind, Precision agriculture: Technology and Economic Perspectives, Springer (Cham, Switzerland), 2017, pp. 52–53. C.G. Sørensen, E. Rodias, D. Bochtis, Auto-steering and controlled traffic farming–Route planning and economics, Precis. Agric. Technol. Econ. Perspect. (2017) 129–145. G. Buttafuoco, A. Castrignano, ` G. Cucci, G. Lacolla, F. Luca, ` Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field, Precis. Agric. 18 (2017) 37–58, https://doi.org/10.1007/s11119-016-9462-9. C. Franco, N. Mejía, S.M. Pedersen, R. Gislum, Potential impact of learning management zones for site-specific N fertilisation: a case study for wheat crops, Nitrogen 3 (2022) 387–403, https://doi.org/10.3390/nitrogen3020025. K. Adhikari, D.R. Smith, H. Collins, C. Hajda, B.S. Acharya, P.R. Owens, Mapping within-field soil health variations using apparent electrical conductivity, topography, and machine learning, Agronomy 12 (5) (2022) 1019, https://doi. org/10.3390/agronomy12051019. J. Serrano, S. Shahidian, J. Marques da Silva, L. Paixao, ˜ F. Moral, J. No´eme, Mapping management zones based on soil apparent electrical conductivity and remote sensing for implementation of variable rate irrigation—Case study of corn under a center pivot, Water 12 (12) (2020) 3427, https://doi.org/10.3390/ w12123427. C.I. Jaramillo-Barrios, A.F. Ortiz-Rico, G.A.A. Carrillo, V.M. Varon-Ramírez, ´ Establishment of homogeneous zones in a soil of alluvial origin, Ciˆenc. Agrotecnologia 43 (2019) e026318, https://doi.org/10.1590/1413- 7054201943026318. D.J. P´erez-Ortega, F.A. Bolanos-Alomia, ˜ A. Marco da Silva, Variables que influyen en la aplicacion ´ de la agricultura de precision ´ en Colombia: revision ´ de estudios (Variables influencing the application of precision agriculture in Colombia: review of studies), Cienc. Tecnol. Agropecu. 23 (1) (2022), https://doi.org/ 10.21930/rcta.vol23_num1_art:2298. A.K. Torres Galindo, A.F. Gomez ´ Rivera, A.F. Jim´enez-Lopez, ´ Desarrollo de un sistema multiespectral para aplicaciones en agricultura de precision ´ usando dispositivos embebidos. (Development of a multispectral system for precision agriculture applications using embedded devices), Sist. Telem´ at. 13 (33) (2015) 27–44, https://doi.org/10.18046/syt.v13i33.2079. A.A. Olaojo, M.A. Oladunjoye, Field-scale apparent electrical conductivity mapping of soil properties in precision agriculture, Braz. J. Geophys. 40 (3) (2022), https://doi.org/10.22564/brjg.v40i3.2171. G.M. Sanches, R. Otto, V. Adamchuk, P.S. Magalh˜ aes, Spatial variability of soil attributes by an electromagnetic induction sensor: a framework of multiple fields assessment under Brazilian soils, Biosyst. Eng. 216 (2022) 229–240, https://doi. org/10.1016/j.biosystemseng.2022.02.017. A. Stadler, S. Rudolph, M. Kupisch, M. Langensiepen, J. van der Kruk, F. Ewert, Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements, Eur. J. Agron. 64 (2015) 8–20, https://doi. org/10.1016/j.eja.2014.12.004. S. Ylagan, K.R. Brye, A.J. Ashworth, P.R. Owens, H. Smith, A.M. Poncet, Using apparent electrical conductivity to delineate field variation in an agroforestry system in the Ozark Highlands, Remote Sens. 14 (22) (2022) 5777, https://doi. org/10.3390/rs14225777. A. Zeyliger, A. Chinilin, O. Ermolaeva, Spatial interpolation of gravimetric soil moisture using EM38-mk induction and ensemble machine learning (case study from dry steppe zone in Volgograd region), Sensors 22 (16) (2022) 6153, https:// doi.org/10.3390/s22166153. D.L. Corwin, E. Scudiero, Field-scale apparent soil electrical conductivity, Soil Sci. Soc. Am. J. 84 (5) (2020) 1405–1441, https://doi.org/10.1002/saj2.20153. N.R. Peralta, J.L. Costa, M. Balzarini, H. Angelini, Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas, Can. J. Soil Sci. 93 (2) (2013) 205–218, https://doi.org/ 10.4141/cjss2012-022. L. Gao, X. Wang, B.A. Johnson, Q. Tian, Y. Wang, X. Gu, Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: a review, ISPRS J. Photogramm. Remote Sens. 159 (2020) 364–377, https://doi.org/10.1016/j.isprsjprs.2019.11.018. I. Poças, ˆ A. Calera, I. Campos, M. Cunha, Remote sensing for estimating and mapping single and basal crop coefficientes: a review on spectral vegetation indices approaches, Agric. Water. Manage 233 (2020) 106081, https://doi.org/ 10.1016/j.agwat.2020.106081. I. Rousta, H. Olafsson, M. Moniruzzaman, H. Zhang, Y.A. Liou, T.D. Mushore, A. Gupta, Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan, Remote Sens. 12 (15) (2020) 2433, https://doi.org/10.3390/rs12152433. K. Chandrasekar, P. Srikanth, A. Chakraborty, K. Choudhary, K.V. Ramana, Response of crop water indices to soil wetness and vegetation water content, Adv. Space Res. (2022), https://doi.org/10.1016/j.asr.2022.11.019. P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, J.M. Gr´egoire, Detecting vegetation leaf water content using reflectance in the optical domain, Remote Sens. Environ. 77 (1) (2001) 22–33, https://doi.org/10.1016/S0034-4257(01) 00191-2. B.C. Gao, NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ. 58 (3) (1996) 257–266, https://doi.org/10.1016/S0034-4257(96)00067-3. R. Ortega-Blu, M. Molina-Roco, Evaluation of vegetation indices and apparent soil electrical conductivity for site-specific vineyard management in Chile, Precis. Agric. 17 (2016) 434–450, https://doi.org/10.1007/s11119-016-9429-x. A.C.D.C. Bernardi, C.R. Grego, R.G. Andrade, L.M. Rabello, R.Y. Inamasu, Spatial variability of vegetation index and soil properties in an integrated crop-livestock system, Rev. Bras. Eng. Agríc. Ambient. 21 (2017) 513–518, https://doi.org/ 10.1590/1807-1929/agriambi.v21n8p513-518. A. Haghverdi, B.G. Leib, R.A. Washington-Allen, P.D. Ayers, M.J. Buschermohle, Perspectives on delineating management zones for variable rate irrigation, Comput. Electron. Agric. 117 (2015) 154–167, https://doi.org/10.1016/j. compag.2015.06.019. E. Scudiero, P. Teatini, D.L. Corwin, R. Deiana, A. Berti, F. Morari, Delineation of site-specific management units in a saline region at the Venice Lagoon margin, Italy, using soil reflectance and apparent electrical conductivity, Comput. Electron. Agric. 99 (2013) 54–64, https://doi.org/10.1016/j. compag.2013.08.023. P. Mazur, D. Gozdowski, E. Wojcik-Gront, ´ Soil electrical conductivity and satellite-derived vegetation indices for evaluation of phosphorus, potassium and magnesium content, pH, and delineation of within-field management zones, Agriculture 12 (6) (2022) 883, https://doi.org/10.3390/agriculture12060883. Y. Yuan, Y. Miao, F. Yuan, S.T. Ata-UI-Karim, X. Liu, Q. Cao, Delineating soil nutrient management zones based on optimal sampling interval in medium-and small-scale intensive farming systems, Precis. Agric. (2022) 1–21, https://doi. org/10.1007/s11119-021-09848-1. A. Chlingaryan, S. Sukkarieh, B. Whelan, Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review, Comput. Electron. Agric. 151 (2018) 61–69, https://doi.org/10.1016/j. compag.2018.05.012. W. Koppen, Das geographische system de klimate. Handbuch Der Klimatologie, Gebrüder borntraeger (Berlin, Germany), 1936. Rodríguez, A.O.; Gomez, ´ D.A.; Martínez, J.C.; Arce, B. (2020). El Sistema Experto Mapa. Una herramienta para mejorar la cultura agroclimatica ´ (en línea). (The Expert Map System. A tool to improve agroclimatic culture (online)). Corporacion ´ Colombiana de Investigacion ´ Agropecuaria (AGROSAVIA). Retrieved March 26, 2024, from 10.21930/agrosavia.analisis.7403466. G. Pty, L. Phone, Geonics limited 1745, Hazard, Waste (1983) 11–13. ESA (2022). Sentinel-2 Level-2A ATBD, 2022, last accessed [20 June 2024] https ://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/le vel-2. S. Morell-Monzo, ´ J. Estornell, M.T. Sebasti´ a-Frasquet, Comparison of Sentinel-2 and high-resolution imagery for mapping land abandonment in fragmented areas, Remote Sens. 12 (12) (2020) 2062, https://doi.org/10.3390/rs12122062. B. Vajsov´ a, D. Fasbender, C. Wirnhardt, S. Lemajic, W. Devos, Assessing spatial limits of Sentinel-2 data on arable crops in the context of checks by monitoring, Remote Sens. 12 (14) (2020) 2195, https://doi.org/10.3390/rs12142195. M. Wang, Z. Liu, M.H.A. Baig, Y. Wang, Y. Li, Y. Chen, Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms, Land Use Policy 88 (2019) 104190, https://doi. org/10.1016/j.landusepol.2019.104190. B. Ortuani, G. Sona, G. Ronchetti, A. Mayer, A. Facchi, Integrating geophysical and multispectral data to delineate homogeneous management zones within a vineyard in Northern Italy, Sensors 19 (18) (2019) 3974, https://doi.org/ 10.3390/s19183974. J. Huang, D. Chen, M.H. Cosh, Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites, Int. J. Remote Sens. 30 (8) (2009) 2075–2104, https://doi.org/10.1080/01431160802549245. Z.T. Sarvestani, H. Pirdashti, S.A. Sanavy, H. Balouchi, Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars, Pak. J. Biol. Sci. PJBS 11 (10) (2008) 1303–1309, https://doi.org/10.3923/pjbs.2008.1303.1309. X. Yang, B. Wang, L. Chen, P. Li, C. Cao, The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality, Sci. Rep. 9 (1) (2019) 3742, https://doi.org/10.1038/s41598-019-40161-0. S.I. Lee, Developing a bivariate spatial association measure: an integration of Pearson’s r and Moran’s I, J. Geogr. Syst. 3 (2001) 369–385, https://doi.org/ 10.1007/s101090100064. S.I. Lee, Correlation and spatial autocorrelation, in: S. Shekhar, H. Xiong, X. Zhou (Eds.), Encyclopedia of GIS, Springer, Cham, 2017, https://doi.org/10.1007/978- 3-319-17885-1_1524. E. Pardo-Igúzquiza, P.A. Dowd, Normality tests for spatially correlated data, Math. Geol. 36 (2004) 659–681, https://doi.org/10.1023/B: MATG.0000039540.43774.2b. R.M. Sakia, The Box-Cox transformation technique: a review, J. R. Stat. Soc. Ser. D Stat. 41 (2) (1992) 169–178, https://doi.org/10.2307/2348250. E.A. Varouchakis, Gaussian transformation methods for spatial data, Geosciences 11 (5) (2021) 196, https://doi.org/10.3390/geosciences11050196. Cordoba, ´ M., Paccioretti, P.A., Giannini Kurina, F., Bruno, C.I., & Balzarini, M.G. (2019). Guía para el an´ alisis de datos espaciales en agricultura. (Guide for the analysis of spatial data in agriculture). Retrieved June 19, 2024, from https://ri. conicet.gov.ar/handle/11336/128391. G. Matheron, Principles of geostatistics, Econ. Geol. 58 (8) (1963) 1246–1266, https://doi.org/10.2113/gsecongeo.58.8.1246. D.T. Hristopulos, Basic notions of random fields. Random Fields for Spatial Data Modeling. Advances in Geographic Information Science, Springer, Dordrecht, 2020, https://doi.org/10.1007/978-94-024-1918-4_3. C.V. Azuka, A.M. Igu´e, Spatial variability of soil properties under different landuse in Koupendri catchment, Benin, Span. J. Soil Sci. 10 (1) (2020), https:// doi.org/10.3232/SJSS.2020.V10.N1.04. A. Rabinowicz, S. Rosset, Cross-validation for correlated data, J. Am. Stat. Assoc. 117 (538) (2022) 718–731, https://doi.org/10.1080/01621459.2020.1801451. C.A. Cambardella, T.B. Moorman, J.M. Novak, T.B. Parkin, D.L. Karlen, A. E. Konopka, Field-scale variability of soil properties in central Iowa soils, Soil Sci. Soc. Am. J. 58 (5) (1994) 1501–1511, https://doi.org/10.2136/ sssaj1994.03615995005800050033x. S. Dray, S. Saïd, F. D´ebias, Spatial ordination of vegetation data using a generalization of Wartenberg’s multivariate spatial correlation, J. Veg. Sci. 19 (1) (2008) 45–56, https://doi.org/10.3170/2007-8-18312. Dray, S., & Jombart, T. (2011). Revisiting guerry’s data: introducing spatial constraints in multivariate analysis. 10.1214/10-AOAS356. F. Giannini Kurina, S. Hang, M.A. Cordoba, G.J. Negro, M.G. Balzarini, Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data, Geoderma 310 (2018) 170–177, https://doi.org/10.1016/j. geoderma.2017.09.011. V. Loewe-Munoz, ˜ R. Del Río, C. Delard, R. Gonzalez, ´ M. Balzarini, Spatial patterns of productivity and human development potentials for Pinus pinea L, Forests 15 (9) (2024) 1537, https://doi.org/10.3390/f15091537. Gonzalez, ´ R., & Woods, R. (2007). Image Processing. Digital Image Process. A. Gili, C. Alvarez, ´ R. Bagnato, E. Noellemeyer, Comparison of three methods for delineating management zones for site-specific crop management, Comput. Electron. Agric. 139 (2017) 213–223, https://doi.org/10.1016/j. compag.2017.05.022. C.W. Fraisse, K.A. Sudduth, N.R. Kitchen, Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity, Trans. ASAE 44 (1) (2001) 155–166, https://doi.org/10.13031/ 2013.2296. B. Tisseyre, C. Leroux, How significantly different are your within field zones? Adv. Anim. Biosci. 8 (2) (2017) 620–624, https://doi.org/10.1017/ S2040470017000012. T.A. Doerge, N.R. Kitchen, E.D. Lund, Site-specific Management Guidelines, Potash & Phosphate Institute, Norcross, 2000, p. 614. H. Akaike, Canonical correlation analysis of time series and the use of an information criterion, Math. Sci. Eng. 126 (1976) 27–96. A.W. Warrick, D.R. Nielsen, Spatial variability of physical properties in the field. HILLEL, D. Applications of Soil Physics, Academic Press, New York, 1980, pp. 319–344. D. Marusig, F. Petruzzellis, M. Tomasella, R. Napolitano, A. Altobelli, A. Nardini, Correlation of field-measured and remotely sensed plant water status as a tool to monitor the risk of drought-induced forest decline, Forests 11 (1) (2020) 77, https://doi.org/10.3390/f11010077. M. Greenacre, P.J. Groenen, T. Hastie, A.I. d’Enza, A. Markos, E. Tuzhilina, Principal component analysis, Nat. Rev. Methods Prim. 2 (1) (2022) 100, https:// doi.org/10.1038/s43586-022-00184-w. Jolliffe, P.M. (2018). Principal component analysis, Prison. Forced Labour Japan, 1–17. 10.4324/9781351206358-1. L. Heydari, H. Bayat, A. Castrignano, ` Scale-dependent geostatistical modelling of crop-soil relationships in view of Precision Agriculture, Precis. Agric. 24 (4) (2023) 1261–1287, https://doi.org/10.1007/s11119-023-09989-5. D.P. Barbosa, E.L. Bottega, D.S. Valente, N.T. Santos, W.D. Guimar˜ aes, Delineation of homogeneous zones based on geostatistical models robust to outliers, Rev. Caatinga 32 (2019) 472–481, https://doi.org/10.1590/1983- 21252019v32n220rc. G.M. Sanches, P.S.G. Magalh˜ aes, H.C.J Franco, Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes, Geoderma 334 (2019) 90–98, https://doi.org/10.1016/j.geoderma.2018.07.051. W. Sun, B.M. Whelan, B. Minasny, A.B. McBratney, Evaluation of a local regression kriging approach for mapping apparent electrical conductivity of soil (ECa) at high resolution, J. Plant Nutr. Soil Sci. 175 (2) (2012) 212–220, https:// doi.org/10.1002/jpln.201100005. W. Yang, M. Li, L. Zheng, H. Sun, Evaluation model of winter wheat yield based on soil properties, in: D. Li, Y. Chen (Eds.), Computer and Computing Technologies in Agriculture VIII. CCTA 2014. IFIP Advances in Information and Communication Technology, Computer and Computing Technologies in Agriculture VIII. CCTA 2014. IFIP Advances in Information and Communication Technology, 452, Springer, Cham, 2015, https://doi.org/10.1007/978-3-319- 19620-6_71. R. Martelli, V. Civitarese, L. Barbanti, A. Ali, G. Sperandio, A. Assirelli, Multi parametric approach to management zone delineation in a hazelnut grove in Italy, Sustainability 15 (13) (2023) 10106, https://doi.org/10.3390/ su151310106. B. Narjary, S. Kumar, M.D. Meena, S.K. Kamra, D.K. Sharma, Effects of shallow saline groundwater table depth and evaporative flux on soil salinity dynamics using Hydrus-1D, Agric. Res. 10 (2021) 105–115, https://doi.org/10.1007/ s40003-020-00484-1. P.R.P. Medeiros, G.H. Cavalcante, N. Brandini, B.A. Knoppers, Inter-annual variability on the water quality in the Lower S˜ ao Francisco River (NE-Brazil), Acta Limnol. Bras. 28 (2016), https://doi.org/10.1590/S2179-975X3515. J.M. Serrano, S. Shahidian, J. Marques da Silva, Spatial variability and temporal stability of apparent soil electrical conductivity in a Mediterranean pasture, Precis. Agric. 18 (2017) 245–263, https://doi.org/10.1590/S2179-975X3515. A. Ashok, H.P. Rani, K.V. Jayakumar, Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery, Remote Sens. Appl. Soc. Environ. 23 (2021) 100547, https://doi.org/10.1016/j.rsase.2021.100547. C. Cavalaris, S. Megoudi, M. Maxouri, K. Anatolitis, M. Sifakis, A. Kyparissis, Modeling of durum wheat yield based on sentinel-2 imagery, Agronomy 11 (8) (2021) 1486, https://doi.org/10.3390/agronomy11081486. M.F. Lopresti, C.M. Di Bella, A.J. Degioanni, Relationship between MODIS-NDVI data and wheat yield: a case study in Northern Buenos Aires province, Argentina, Inf. Process. Agric. 2 (2) (2015) 73–84, https://doi.org/10.1016/j. inpa.2015.06.001. S.K. McFeeters, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens. 17 (7) (1996) 1425–1432, https://doi.org/10.1080/01431169608948714. A. Nagy, J. Feh´er, J. Tam´ as, Wheat and maize yield forecasting for the Tisza River catchment using MODIS NDVI time series and reported crop statistics, Comput. Electron. Agric. 151 (2018) 41–49, https://doi.org/10.1016/j. compag.2018.05.035. R. Jiang, P. Wang, Y. Xu, Z. Zhou, X. Luo, K. Laakso, Assessing the operation parameters of a low-altitude UAV for the collection of NDVI values over a paddy rice field, Remote Sens. 12 (11) (2020) 1850, https://doi.org/10.3390/ rs12111850. A. AghaKouchak, A. Farahmand, F.S. Melton, J. Teixeira, M.C. Anderson, C. R. Hain, Remote sensing of drought: progress, challenges and opportunities, Rev. Geophys. 53 (2) (2015) 452–480, https://doi.org/10.1002/2014RG000456. J. Soriano-Gonz´ alez, E. Angelats, M. Martínez-Eixarch, C. Alcaraz, Monitoring rice crop and yield estimation with Sentinel-2 data, Field Crops Res. 281 (2022) 108507, https://doi.org/10.1016/j.fcr.2022.108507. I.P. de Lima, R.G. Jorge, J.L.P. de Lima, Remote sensing monitoring of rice fields: towards assessing water saving irrigation management practices, Front. Remote Sens. 2 (2021) 762093, https://doi.org/10.3389/frsen.2021.762093. F. Andr´e, C. Van Leeuwen, S. Saussez, R. Van Durmen, P. Bogaert, S. Lambot, High-resolution imaging of a vineyard in south of France using ground penetrating radar, electromagnetic induction and electrical resistivity tomography, J. Appl. Geophy. 78 (2012) 113–122, https://doi.org/10.1016/j. jappgeo.2011.08.002. F. Alliaume, G. Echeverria, M. Ferrer, P. Gonz´ alez Barrios, A study of the multivariate spatial variability of soil properties, and their association with vine vigor growing on a clayish soil, J. Soil Sci. Plant Nutr. (2024) 1–16, https://doi. org/10.1007/s42729-024-01751-8. C. Esteves, D. Fangueiro, R.P. Braga, M. Martins, M. Botelho, H. Ribeiro, Assessing the contribution of ECa and NDVI in the delineation of management zones in a vineyard, Agronomy 12 (6) (2022) 1331, https://doi.org/10.3390/ agronomy12061331. L.O. Anderson, Y. Malhi, L.E. Arag˜ ao, R. Ladle, E. Arai, O. Phillips, Remote sensing detection of droughts in Amazonian forest canopies, New Phytol. 187 (3) (2010) 733–750, https://doi.org/10.1111/j.1469-8137.2010.03355.x. P. Ceccato, N. Gobron, S. Flasse, B. Pinty, S. Tarantola, Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach, Remote Sens. Environ. 82 (2–3) (2002) 188–197, https://doi.org/ 10.1016/S0034-4257(02)00037-8. Y. Gu, J.F. Brown, J.P. Verdin, B. Wardlow, A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States, Geophys. Res. Lett. 34 (6) (2007), https://doi.org/10.1029/ 2006GL029127. X. Zhang, Y. Yamaguchi, F. Li, B. He, Y. Chen, Assessing the impacts of the 2009/ 2010 drought on vegetation indices, normalized difference water index, and land surface temperature in Southwestern China, Adv. Meteorol. 2017 (1) (2017) 6837493, https://doi.org/10.1155/2017/6837493. J. Ding, S. Yang, Q. Shi, Y. Wei, F. Wang, Using apparent electrical conductivity as indicator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in Southern Xinjiang, China, Remote Sens. 12 (16) (2020) 2601, https://doi.org/10.3390/rs12162601. M.M. Gaballah, A.M. Metwally, M. Skalicky, M.M. Hassan, M. Brestic, A. M. Fayed, Genetic diversity of selected rice genotypes under water stress conditions, Plants 10 (1) (2020) 27, https://doi.org/10.3390/plants10010027. C. Vallentin, E.S. Dobers, S. Itzerott, B. Kleinschmit, D. Spengler, Delineation of management zones with spatial data fusion and belief theory, Precis. Agric. 21 (4) (2020) 802–830, https://doi.org/10.1007/s11119-019-09696-0. C. Georgi, D. Spengler, S. Itzerott, B. Kleinschmit, Automatic delineation algorithm for site-specific management zones based on satellite remote sensing data, Precis. Agric. 19 (2018) 684–707, https://doi.org/10.1007/s11119-017- 9549-y. S. Nawar, R. Corstanje, G. Halcro, D. Mulla, A.M. Mouazen, Delineation of soil management zones for variable-rate fertilization: a review, Adv. Agron. 143 (2017) 175–245, https://doi.org/10.1016/bs.agron.2017.01.003. L.I. Luna, Application of PCA with georeferenced data in the tourism industry: a case study in the province of Cordoba, ´ Argentina, Tour. Econ. 28 (2) (2022) 559–579, https://doi.org/10.1177/1354816620987681. J.J. Fridgen, N.R. Kitchen, K.A. Sudduth, S.T. Drummond, W.J. Wiebold, C. W. Fraisse, Management zone analyst (MZA) software for subfield management zone delineation, Agron. J. 96 (1) (2004) 100–108, https://doi.org/10.2134/ agronj2004.1000. R.J. Yao, J.S. Yang, D.H. Wu, W.P. Xie, P. Gao, X.P. Wang, Characterizing spatial–temporal changes of soil and crop parameters for precision management in a coastal rainfed agroecosystem, Agron. J. 108 (6) (2016) 2462–2477, https:// doi.org/10.2134/agronj2016.01.0004. L.T. Nguyen, T. Nanseki, S. Ogawa, Y. Chomei, Determination of paddy rice yield in the context of farmers’ adoption of multiple technologies in Colombia, Int. J. Plant Prod. (2022) 1–12, https://doi.org/10.1007/s42106-021-00173-1. N. Hashim, M.M. Ali, M.R. Mahadi, A.F. Abdullah, A. Wayayok, A. Jamaluddin, Smart farming for sustainable rice production: an insight into application, challenge, and future prospect, Rice Sci. 31 (1) (2024) 47–61, https://doi.org/ 10.1016/j.rsci.2023.08.004. S. Loaiza, L. Verchot, D. Valencia, P. Guzman, ´ N. Amezquita, C.M. Pittelkow, Evaluating greenhouse gas mitigation through alternate wetting and drying irrigation in Colombian rice production, Agric. Ecosyst. Environ. 360 (2024) 108787, https://doi.org/10.1016/j.agee.2023.108787. M. Denora, M. Fiorentini, S. Zenobi, P.A. Deligios, R. Orsini, L. Ledda, M. Perniola, Validation of rapid and low-cost approach for the delineation of zone management based on machine learning algorithms, Agronomy 12 (1) (2022) 183, https://doi.org/10.3390/agronomy12010183. F.J. Moral, F.J. Rebollo, J.M. Serrano, Delineating site-specific management zones on pasture soil using a probabilistic and objective model and geostatistical techniques, Precis. Agric. 21 (3) (2020) 620–636, https://doi.org/10.1007/ s11119-019-09686-2. P. Pilesjo, ¨ L. Thyl´en, A. Persson, Topographical data for delineation of agricultural management zones. Precision Agriculture ‘05, Wageningen Academic, 2005, pp. 819–826, https://doi.org/10.3920/978-90-8686-549-9_100. J.A. Satorra, J.A.M. Casasnovas, M. Ribes-Dasi, J.R.R. Polo, Clustering of grape yield maps to delineate site-specific management zones, Span. J. Agric. Res. (3) (2011) 721–729, https://doi.org/10.5424/sjar/20110903-456-10. J. Serrano, S. Shahidian, L. Paixao, ˜ J. Marques da Silva, F. Moral, Management zones in pastures based on soil apparent electrical conductivity and altitude: NDVI, soil and biomass sampling validation, Agronomy 12 (4) (2022) 778, https://doi.org/10.3390/agronomy12040778. N. Delavarpour, C. Koparan, J. Nowatzki, S. Bajwa, X. Sun, A technical study on UAV characteristics for precision agriculture applications and associated practical challenges, Remote Sens. 13 (6) (2021) 1204, https://doi.org/10.3390/ rs13061204. P. Lagacherie, C. Gomez, Vis-NIR-SWIR remote sensing products as new soil data for digital soil mapping, Pedometrics (2018) 415–437, https://doi.org/10.1007/ 978-3-319-63439-5_13. B. Bukombe, S. Csenki, D. Szlatenyi, I. Czako, V. Lang, ´ Integrating remote sensing, proximal sensing, and probabilistic modeling to support agricultural project planning and decision-making for waterlogged fields, Water 15 (7) (2023) 1340, https://doi.org/10.3390/w15071340. K. Jindo, O. Kozan, K. Iseki, B. Maestrini, F.K. van Evert, C. Kempenaar, Potential utilization of satellite remote sensing for field-based agricultural studies, Chem.Biol. Technol. Agric. 8 (2021) 1–16, https://doi.org/10.1186/s40538-021-00253- 4 J. Serrano, S. Shahidian, J. Marques da Silva, L. Paix˜ ao, J. Calado, M.D. Carvalho, Integration of soil electrical conductivity and indices obtained through satellite imagery for differential management of pasture fertilization, AgriEngineering 1 (4) (2019) 567–585, https://doi.org/10.3390/agriengineering1040041. J. Serrano, V. Mau, R. Rodrigues, L. Paixao, ˜ S. Shahidian, F.J. Moral, Definition and validation of vineyard management zones based on soil apparent electrical conductivity and altimetric survey, Environments 10 (7) (2023) 117, https://doi. org/10.3390/environments10070117. A. Kumar, A.K. Nayak, B.S. Das, N. Panigrahi, P. Dasgupta, H. Pathak, Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2, Sci. Total Environ. 650 (2019) 2032–2050, https://doi.org/10.1016/j. scitotenv.2018.09.332. H. Ahmad, S.A. Zafar, M.K. Naeem, S. Shokat, S. Inam, M.R. Khan, Impact of pre anthesis drought stress on physiology, yield-related traits, and drought-responsiv genes in green super rice, Front. Genet. 13 (2022) 832542, https://doi.org/ 10.3389/fgene.2022.832542. A. Kumar, J. Bernier, S. Verulkar, H.R. Lafitte, G.N. Atlin, Breeding for drought tolerance: direct selection for yield, response to selection and use of drought tolerant donors in upland and lowland-adapted populations, Field Crops Res. 107 (3) (2008) 221–231, https://doi.org/10.1016/j.fcr.2008.02.007. P.E. Ratshiedana, M.A. Abd Elbasit, E. Adam, J.G. Chirima, G. Liu, E. B. Economon, Determination of soil electrical conductivity and moisture on different soil layers using electromagnetic techniques in irrigated arid environments in South Africa, Water 15 (10) (2023) 1911, https://doi.org/ 10.3390/w15101911. A. Pedrera-Parrilla, E. Van De Vijver, M. Van Meirvenne, A.J. Espejo-P´erez, J. V. Gir´ aldez, K. Vanderlinden, Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping, Precis. Agric. 17 (2016) 531–545, https://doi.org/ 10.1007/s11119-016-9435-z. Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Tolima Colombia Elsevier Smart Agricultural Technology; Vol. 8, (2024): Smart Agricultural Technology (Diciembre) |