Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed

This study aims to optimize the bioconversion of palm kernel cake (PKC) by Pleurotus ostreatus to improve fungal biomass production, lignocellulolytic enzyme expression, and the nutritional value of the substrate as ruminant feed. Three inorganic nitrogen sources (ammonium sulfate, ammonium nitra...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibarra Rondón, Aldo, Durán Sequeda, Dinary Eloisa, Castro Pacheco, Andrea Carolina, Fragoso Castilla, Pedro, Barahona Rosales, Rolando, Mojica Rodríguez, José Edwin
Formato: article
Lenguaje:Inglés
Publicado: Multidisciplinary Digital Publishing Institute - MDPI 2025
Materias:
Acceso en línea:https://www.mdpi.com/2311-5637/11/5/251
http://hdl.handle.net/20.500.12324/41156
https://doi.org/10.3390/fermentation11050251
id RepoAGROSAVIA41156
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Genética y mejoramiento animal - L10
Ganado bovino
Genética animal
Hongo
Enzima
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_1391
http://aims.fao.org/aos/agrovoc/c_49986
http://aims.fao.org/aos/agrovoc/c_3145
http://aims.fao.org/aos/agrovoc/c_2603
spellingShingle Genética y mejoramiento animal - L10
Ganado bovino
Genética animal
Hongo
Enzima
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_1391
http://aims.fao.org/aos/agrovoc/c_49986
http://aims.fao.org/aos/agrovoc/c_3145
http://aims.fao.org/aos/agrovoc/c_2603
Ibarra Rondón, Aldo
Durán Sequeda, Dinary Eloisa
Castro Pacheco, Andrea Carolina
Fragoso Castilla, Pedro
Barahona Rosales, Rolando
Mojica Rodríguez, José Edwin
Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
description This study aims to optimize the bioconversion of palm kernel cake (PKC) by Pleurotus ostreatus to improve fungal biomass production, lignocellulolytic enzyme expression, and the nutritional value of the substrate as ruminant feed. Three inorganic nitrogen sources (ammonium sulfate, ammonium nitrate, and urea) were evaluated for fungal biomass production using a central composite design (CCD) in liquid fermentations. The formulated culture medium (18.72 g/L glucose and 0.39 g/L urea) effectively yielded better fungal biomass production (8 g/L). Based on these results, an extreme vertex design, mixtures with oil palm by-products (PK, hull, and fiber) supplemented with urea, were formulated, finding that PKC stimulated the highest biomass production and laccase enzyme activity in P. ostreatus. The transcriptome of P. ostreatus was obtained, and the chemical composition of the fermented PKC was determined. Transcriptomic analysis revealed the frequency of five key domains with carbohydrate-activated enzyme (CAZy) function: GH3, GH18, CBM1, AA1, and AA5, with activities on lignocellulose. In the fermented PKC, lignin was reduced by 46.9%, and protein was increased by 69.8%. In conclusion, these results show that urea is efficient in the bioconversion of PKC with P. ostreatus as a supplement for ruminants.
format article
author Ibarra Rondón, Aldo
Durán Sequeda, Dinary Eloisa
Castro Pacheco, Andrea Carolina
Fragoso Castilla, Pedro
Barahona Rosales, Rolando
Mojica Rodríguez, José Edwin
author_facet Ibarra Rondón, Aldo
Durán Sequeda, Dinary Eloisa
Castro Pacheco, Andrea Carolina
Fragoso Castilla, Pedro
Barahona Rosales, Rolando
Mojica Rodríguez, José Edwin
author_sort Ibarra Rondón, Aldo
title Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
title_short Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
title_full Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
title_fullStr Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
title_full_unstemmed Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
title_sort optimization of palm kernel cake bioconversion with p. ostreatus: an efficient lignocellulosic biomass value-adding process for ruminant feed
publisher Multidisciplinary Digital Publishing Institute - MDPI
publishDate 2025
url https://www.mdpi.com/2311-5637/11/5/251
http://hdl.handle.net/20.500.12324/41156
https://doi.org/10.3390/fermentation11050251
work_keys_str_mv AT ibarrarondonaldo optimizationofpalmkernelcakebioconversionwithpostreatusanefficientlignocellulosicbiomassvalueaddingprocessforruminantfeed
AT duransequedadinaryeloisa optimizationofpalmkernelcakebioconversionwithpostreatusanefficientlignocellulosicbiomassvalueaddingprocessforruminantfeed
AT castropachecoandreacarolina optimizationofpalmkernelcakebioconversionwithpostreatusanefficientlignocellulosicbiomassvalueaddingprocessforruminantfeed
AT fragosocastillapedro optimizationofpalmkernelcakebioconversionwithpostreatusanefficientlignocellulosicbiomassvalueaddingprocessforruminantfeed
AT barahonarosalesrolando optimizationofpalmkernelcakebioconversionwithpostreatusanefficientlignocellulosicbiomassvalueaddingprocessforruminantfeed
AT mojicarodriguezjoseedwin optimizationofpalmkernelcakebioconversionwithpostreatusanefficientlignocellulosicbiomassvalueaddingprocessforruminantfeed
_version_ 1842255664997466112
spelling RepoAGROSAVIA411562025-08-30T03:00:42Z Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed Ibarra Rondón, Aldo Durán Sequeda, Dinary Eloisa Castro Pacheco, Andrea Carolina Fragoso Castilla, Pedro Barahona Rosales, Rolando Mojica Rodríguez, José Edwin Genética y mejoramiento animal - L10 Ganado bovino Genética animal Hongo Enzima Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_1391 http://aims.fao.org/aos/agrovoc/c_49986 http://aims.fao.org/aos/agrovoc/c_3145 http://aims.fao.org/aos/agrovoc/c_2603 This study aims to optimize the bioconversion of palm kernel cake (PKC) by Pleurotus ostreatus to improve fungal biomass production, lignocellulolytic enzyme expression, and the nutritional value of the substrate as ruminant feed. Three inorganic nitrogen sources (ammonium sulfate, ammonium nitrate, and urea) were evaluated for fungal biomass production using a central composite design (CCD) in liquid fermentations. The formulated culture medium (18.72 g/L glucose and 0.39 g/L urea) effectively yielded better fungal biomass production (8 g/L). Based on these results, an extreme vertex design, mixtures with oil palm by-products (PK, hull, and fiber) supplemented with urea, were formulated, finding that PKC stimulated the highest biomass production and laccase enzyme activity in P. ostreatus. The transcriptome of P. ostreatus was obtained, and the chemical composition of the fermented PKC was determined. Transcriptomic analysis revealed the frequency of five key domains with carbohydrate-activated enzyme (CAZy) function: GH3, GH18, CBM1, AA1, and AA5, with activities on lignocellulose. In the fermented PKC, lignin was reduced by 46.9%, and protein was increased by 69.8%. In conclusion, these results show that urea is efficient in the bioconversion of PKC with P. ostreatus as a supplement for ruminants. Universidad Popular del Cesar Ganadería bovina 2025-08-29T17:44:48Z 2025-08-29T17:44:48Z 2025-05 2025 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2311-5637/11/5/251 2311-5637 http://hdl.handle.net/20.500.12324/41156 https://doi.org/10.3390/fermentation11050251 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Fermentation 11 5 1 17 Kumar, V.; Goala, M.; Kumar, P.; Singh, J.; Kumar, P. Integration of treated agro-based wastewaters (TAWs) management with mushroom cultivation. In Environmental Degradation: Causes and Remediation Strategies; Agro Environ Media, Agriculture and Environmental Science Academy: Haridwar, India, 2020; pp. 63–75. [CrossRef] Conceição, A.A.; Mendes, T.D.; Mendonça, S.; Quirino, B.F.; de Almeida, E.G.; de Siquiera, F.G. Nutraceutical Enrichment of Animal Feed by Filamentous Fungi Fermentation. Fermentation 2022, 8, 402. [CrossRef] Thamvithayakorn, P.; Phosri, C.; Pisutpaisal, N.; Krajangsang, S.; Whalley, A.J.S.; Suwannasai, N. Utilization of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel white-rot fungus, Pseudolagarobasidium sp. PP17-33. 3 Biotech 2019, 9, 417. [CrossRef] [PubMed] Azzahra, Y.R.; Toharmat, T.; Prihantoro, I. Bio-processing Plantation by-products with White Oyster Mushroom (Pleurotus ostreatus) to Improve Fermentability and Digestibility Based on Substrate Type and Fermentation Time. Bul. Peternak. 2022, 46, 228. [CrossRef] Santos, L.V.; Silva, R.R.; Silva, F.F.; Silva, J.W.D.; Barroso, D.S.; Silva, A.P.; Souza, S.O.; Santos, M.C. Increasing levels of palm kernel cake (Elaeis guineensis jacq.) in diets for feedlot cull cows. Chil. J. Agric. Res. 2019, 79, 628–635. [CrossRef] Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Anim. Nutr. 2019, 5, 319–330. [CrossRef] Oliveira, A.C.; Amorim, G.M.; Azevêdo, J.A.G.; Godoy, M.G.; Freire, D.M.G. Solid-state fermentation of co-products from palm oil processing: Production of lipase and xylanase and effects on chemical composition. Biocatal Biotransform. 2018, 36, 381–388. [CrossRef] Cruz-Vázquez, A.; Tomasini, A.; Armas-Tizapantzi, A.; Marcial-Quino, J.; Montiel-González, A.M. Extracellular proteases and laccases produced by Pleurotus ostreatus PoB: The effects of proteases on laccase activity. Int. Microbiol. 2022, 25, 495–502. [CrossRef] Nur-Nazratul, F.M.Y.; Rakib, M.R.M.; Zailan, M.Z.; Yaakub, H. Enhancing in vitro ruminal digestibility of oil palm empty fruit bunch by biological pre-treatment with Ganoderma lucidum fungal culture. PLoS ONE 2021, 16, e0258065. [CrossRef] Boadu, K.B.; Nsiah-Asante, R.; Antwi, R.T.; Obirikorang, K.A.; Anokye, R.; Ansong, M. Influence of the chemical content of sawdust on the levels of important macronutrients and ash composition in Pearl oyster mushroom (Pleurotus ostreatus). PLoS ONE 2023, 18, e0287532. [CrossRef] Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014, 5, 656. [CrossRef] Davis, M.A.; Wong, K.H. Nitrogen Metabolism in Filamentous Fungi. In Cellular and Molecular Biology of Filamentous Fungi; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 325–338. [CrossRef] Velásquez-Quintero, C.; Merino-Restrepo, A.; Hormaza-Anaguano, A. Production, extraction, and quantification of laccase obtained from an optimized solid-state fermentation of corncob with white-rot fungi. J. Clean. Prod. 2022, 370, 133598. [CrossRef] Xu, F.; Chen, P.; Li, H.; Qiao, S.; Wang, J.; Wang, Y.; Wang, X.; Wu, B.; Liu, H.; Wang, C.; et al. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. J. Hazard. Mater. 2021, 416, 125814. [CrossRef] [PubMed] Fernández-Fueyo, E.; Ruiz-Dueñas, F.J.; López-Lucendo, M.F.; Pérez-Boada, M.; Rencoret, J.; Gutiérrez, A.; Pisabarro, A.G.; Ramírez, L.; Martínez, A.T. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnol Biofuels 2016, 9, 49. [CrossRef] [PubMed] Datsomor, O.; Gou-qi, Z.; Miao, L. Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Sci. Rep. 2022, 12, 1129. [CrossRef] Wang, Y.; Luo, Y.; Luo, L.; Zhang, H.; Liao, Y.; Gou, C. Enhancement of the nutritional value of fermented corn stover as ruminant feed using the fungi Pleurotus spp. Sci. Rep. 2021, 11, 11961. [CrossRef] Venkateswarulu, T.C.; Prabhakar, K.V.; Kumar, R.B.; Krupanidhi, S. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology. 3 Biotech 2017, 7, 186. [CrossRef] Durán-Sequeda, D.; Suspes, D.; Maestre, E.; Alfaro, M.; Pérez, G.; Ramírez, L.; Pisabarro, A.G.; Sierra, R. Effect of Nutritional Factors and Copper on the Regulation of Laccase Enzyme Production in Pleurotus ostreatus. J. Fungi 2022, 8, 7. [CrossRef] Tinoco-Valencia, R.; Gómez-Cruz, C.; Galindo, E.; Serrano-Carreón, L. Toward an understanding of the effects of agitation and aeration on growth and laccases production by Pleurotus ostreatus. J. Biotechnol. 2014, 177, 67–73. [CrossRef] Rubiano-Orozco, L.A.; Castro-Pacheco, A.C.; Jiménez-Rojas, F.; Fragoso-Castilla, P.J.; Ibarra-Rondón, A.J.; Rodríguez-Jiménez, D.M. Evaluación de la actividad lignocelulolítica de hongos cultivados en subproductos de la palma de aceite (Elaeis guineensis). Biotecnol. Sect. Agropecu. Agroind. 2024, 22, 70–86. Melanouri, E.-M.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part I: Screening for growth, endoglucanase, laccase and biomass production in the colonization pase. Carbon Resour. Convers. 2022, 5, 61–70. [CrossRef] Zhou, S.; Raouche, S.; Grisel, S.; Navarro, D.; Sigoillot, J.C.; Herpoël-Gimbert, I. Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. Microb. Biotechnol. 2015, 8, 940–949. [CrossRef] [PubMed] Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [CrossRef] [PubMed] Ariza Nieto, C.; Mayorga Mogollón, O.L.; Parra Forero, D.M.; Camargo Hernández, D.B.; Buitrago Albarado, C.P.; Moreno Rodríguez, J.M. Tecnología NIRS para el Análisis Rápido y Confiable de la Composición Química de Forrajes Tropicales; Corporación Colombiana de Investigación Agropecuaria (Agrosavia): Agustín Codazzi, Colombia, 2020. [CrossRef] Minitab Inc, “Minitab® 18” [Software de Análisis Estadístico]. 2017. Available online: https://www.minitab.com/es-mx/ products/minitab/ (accessed on 30 October 2024). Naim, L.; Alsanad, M.A.; El Sebaaly, Z.; Shaban, N.; Abou Fayssal, S.; Sassine, Y.N. Variation of Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm. (1871) performance subjected to different doses and timings of nano-urea. Saudi J. Biol. Sci. 2020, 27, 1573–1579. [CrossRef] [PubMed] Nunes, M.D.; Rodríguez da Luz, J.M.; Albino Paes, S.; Oliveira Ribeiro, J.J.; Soares da Silva, M.C.; Megumi Kasuya, M.C. Nitrogen Supplementation on the Productivity and the Chemical Composition of Oyster Mushroom. J. Food Res. 2012, 1, 113. [CrossRef] Sassine, Y.N.; Naim, L.; El Sebaaly, Z.; Abou Fayssal, S.; Alsanad, M.A.; Yordanova, M.H. Nano urea effects on Pleurotus ostreatus nutritional value depending on the dose and timing of application. Sci. Rep. 2021, 11, 5588. [CrossRef] Chiranjeevi, P.V.; Rajasekara, M.; Sathish, T. Enhancement of Laccase Production from Pleurotus ostreatus PVCRSP-7 by altering the Nutritional Conditions using Response Surface Methodology. BioResources 2014, 9, 4212–4225. [CrossRef] Déo, N.; Faustin, K. Effect of substrates and doses of urea on growth and yield of an oyster mushroom (Pleurotus ostreatus) in greenhouse. Int. J. Agric. Policy Res. 2015, 3, 314–322. [CrossRef] So´snicka, A.; Kózka, B.; Makarova, K.; Giebułtowicz, J.; Klimaszewska, M.; Turło, J. Optimization of White-Rot Fungi Mycelial Culture Components for Bioremediation of Pharmaceutical-Derived Pollutants. Water 2022, 14, 1374. [CrossRef] Haider, A.; Alam, M.M.; Khan, A.A.; Zulfiqar, M.A. Optimization of Cultural Conditions for the Treatment of Pulp and Paper Industrial Effluent by Pleurotus ostreatus (L.). Pak. J. Agric. Res. 2019, 32, 507–513. [CrossRef] Agustin, F.; Elihasridas; Juliyarsi, I. The effect of urea supplementation and incubation time in fermentation process of bagasse by using Ganoderma lucidum on the growth of G. lucidum and the nutritive value of bagasse. IOP Conf. Ser. Earth Environ. Sci. 2019, 287, 012016. [CrossRef] Daou, M.; Faulds, C.B. Glyoxal oxidases: Their nature and properties. World J. Microbiol. Biotechnol. 2017, 33, 87. [CrossRef] [PubMed] Wu, Y.Y.J.; Wei, F.; Wan, Z.; Dong, Y.; Lu, Y.; Yang, P.; Jin, Y.; Saddler, J. Elucidating the synergistic action between sulfonated lignin and lytic polysaccharide monooxygenases (LPMOs) in enhancing cellulose hydrolysis. Int. J. Biol. Macromol. 2025, 296, 139674. [CrossRef] Erickson, E.; Bleem, A.; Kuatsjah, E.; Werner, A.Z.; DuBois, J.L.; McGeehan, J.E.; Eltis, L.D.; Beckham, G.T. Critical enzyme reactions in aromatic catabolism for microbial lignin conversión. Nat. Catal. 2022, 5, 86–98. [CrossRef] Ning, D.;Wang, H.; Ding, C.; Lu, H. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation 2010, 21, 889–901. [CrossRef] Li, Z.; Zhao, C.; Zhou, Y.; Zheng, S.; Hu, Q.; Zou, Y. Label-free comparative proteomic analysis of Pleurotus eryngii grown on sawdust, bagasse, and peanut shell substrates. J. Proteom. 2024, 294, 105074. [CrossRef] Li, Y.; Liu, J.; Wang, G.; Yang, M.; Yang, X.; Li, T.; Chen, G. De novo transcriptome analysis of Pleurotus djamor to identify genes encoding CAZymes related to the decomposition of corn stalk lignocellulose. J. Biosci. Bioeng. 2019, 128, 529–536. [CrossRef] Xie, C.; Gong, W.; Zhu, Z.; Zhou, Y.; Xu, C.; Yan, L.; Hu, Z.; Ai, L.; Peng, Y. Comparative secretome of white-rot fungi reveals co-regulated carbohydrate-active enzymes associated with selective ligninolysis of ramie stalks. Microb. Biotechnol. 2021, 14, 911–922. [CrossRef] Valadares, F.; Gonçalves, T.A.; Damasio, A.; Milagres, A.M.F.; Squina, F.M.; Segato, F.; Ferraz, A. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme Microb. Technol. 2019, 130, 109370. [CrossRef] Wu, H.; Nakazawa, T.; Xu, H.; Yang, R.; Bao, D.; Kawauchi, M.; Sakamoto, M.; Honda, Y. Comparative transcriptional analyses of Pleurotus ostreatus mutants on beech wood and rice straw shed light on substrate-biased gene regulation. Appl. Microbiol. Biotechnol. 2021, 105, 1175–1190. [CrossRef] Peña, A.; Peña, A.; Babiker, R.; Chaduli, D.; Lipzen, A.;Wang, M.; Chovatia, M.; Rencoret, J.; Marques, G.; Sánchez-Ruiz, M.I.; et al. A multiomic approach to understand how Pleurotus eryngii transforms non-woody lignocellulosic material. J. Fungi 2021, 7, 426. [CrossRef] Alfaro, M.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative analysis of secretomes in basidiomycete fungi. J. Proteom. 2014, 6, 28–43. [CrossRef] [PubMed] Yang, Y.; Sossah, F.L.; Li, Z.; Hyde, K.D.; Li, D.; Xiao, S.; Fu, Y.; Yuan, X.; Li, Y. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Mycogone perniciosa. Front. Microbiol. 2021, 11, 596719. [CrossRef] Yarden, O.; Zhang, J.; Marcus, D.; Changwal, C.; Mabjeesh, S.J.; Lipzen, A.; Zhang, Y.; Savage, E.; Ng, V.; Grigoriev, I.V.; et al. Altered Expression of Two Small Secreted Proteins (ssp4 and ssp6) Affects the Degradation of a Natural Lignocellulosic Substrate by Pleurotus ostreatus. Int. J. Mol. Sci. 2023, 24, 16828. [CrossRef] Olagunju, L.K.; Isikhuemhen, O.S.; Dele, P.A.; Anike, F.N.; Essick, B.G.; Holt, N.; Udombang, N.S.; Ike, K.A.; Shaw, Y.; Brice, R.M.; et al. Pleurotus ostreatus Can Significantly Improve the Nutritive Value of Lignocellulosic Crop Residues. Agriculture 2023, 13, 1161. [CrossRef] Sabariyah, S.; Rusdi; Damry; Hasanuddin, A. The nutritional value enhancement of oil palm empty fruit bunches as animal feed using the fungus Coprinus comatus, with different numbers of inoculums and incubation times. Int. J. Des. Nat. Ecodyn. 2021, 16, 269–274. [CrossRef] van Dam, L.; Cruz-Morales, P.; Valerón, N.R.; de Carvalho, A.C.; Vásquez, D.P.; Lübke, M.; Pedersen, L.K.; Munk, R.; Sommer, M.O.A.; Jahn, L.J. GastronOmics: Edibility and safety of mycelium of the oyster mushroom Pleurotus ostreatus. Curr. Res. Food Sci. 2024, 9, 100866. [CrossRef] Jaworska, G.; Berna, E. Comparison of amino acid content in canned Pleurotus ostreatus and Agaricus bisporus mushrooms. Veg. Crops Res. Bull. 2011, 74, 107–115. [CrossRef] Castorina, G.; Cappa, C.; Negrini, N.; Criscuoli, F.; Casiraghi, M.C.; Marti, A.; Rollini, M.; Consonni, G.; Erba, D. Characterization and nutritional valorization of agricultural waste corncobs from Italian maize landraces through the growth of medicinal mushrooms. Sci. Rep. 2023, 13, 21148. [CrossRef] Cateni, F.; Gargano, M.L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in wild and cultivated mushrooms: Nutrition and health. Phytochem. Rev. 2022, 21, 339–383. [CrossRef] Ábrego-Gacía, A.; Poggi-Varaldo, H.M.; Robles-González, V.; Ponce-Noyola, T.; Calva-Calva, G.; Ríos-Leal, E.; Estrada-Bárcenas, D.; Mendoza-Vargas, A. Lovastatin as a supplement to mitigate rumen methanogenesis: An overview. J. Anim. Sci. Biotechnol. 2021, 12, 123. [CrossRef] Astudillo-Neira, R.; Suescun-Ospina, S.; Vera-Aguilera, N.; Alarcon-Enos, J.; Ávila-Stagno, J. Biodegraded hay with graded addition of Pleurotus ostreatus improves dry matter disappearance and reduces methane production of diets incubated in vitro. Ital. J. Anim. Sci. 2023, 22, 347–358. [CrossRef] Khonkhaeng, B.; Cherdthong, A. Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. J. Fungi 2020, 6, 69. [CrossRef] [PubMed] Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Multidisciplinary Digital Publishing Institute - MDPI Fermentation; Vol. 11, Núm. 5 (2025): Fermentation (Mayo);p. 1 - 17.