Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry

Global cacao production, primarily led by African countries, is facing a crisis, which presents growth potential for South American countries like Colombia, Peru, and Ecuador. However, a significant challenge for these countries is cadmium (Cd) contamination in cacao beans. Agroforestry systems w...

Descripción completa

Detalles Bibliográficos
Autores principales: L. Carvalho, Fabricio E., Montenegro, Andrea C., Escobar Pachajoa, Laura D., Rojas Molina, Jairo, Camacho Diaz, Jorge E., Rengifo Estrada, Gersain A.
Formato: article
Lenguaje:Inglés
Publicado: Multidisciplinary Digital Publishing Institute (MDPI) 2025
Materias:
Acceso en línea:https://www.mdpi.com/2223-7747/14/7/1101
http://hdl.handle.net/20.500.12324/41150
https://doi.org/10.3390/plants14071101
id RepoAGROSAVIA41150
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Investigación agropecuaria - A50
Theobroma cacao
Agroforestería
Cadmio
Metal pesado
Cacao
http://aims.fao.org/aos/agrovoc/c_7713
http://aims.fao.org/aos/agrovoc/c_207
http://aims.fao.org/aos/agrovoc/c_1178
http://aims.fao.org/aos/agrovoc/c_2223
spellingShingle Investigación agropecuaria - A50
Theobroma cacao
Agroforestería
Cadmio
Metal pesado
Cacao
http://aims.fao.org/aos/agrovoc/c_7713
http://aims.fao.org/aos/agrovoc/c_207
http://aims.fao.org/aos/agrovoc/c_1178
http://aims.fao.org/aos/agrovoc/c_2223
L. Carvalho, Fabricio E.
Montenegro, Andrea C.
Escobar Pachajoa, Laura D.
Rojas Molina, Jairo
Camacho Diaz, Jorge E.
Rengifo Estrada, Gersain A.
Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry
description Global cacao production, primarily led by African countries, is facing a crisis, which presents growth potential for South American countries like Colombia, Peru, and Ecuador. However, a significant challenge for these countries is cadmium (Cd) contamination in cacao beans. Agroforestry systems with cacao (CAFSs) improve soil health and can remediate Cd through tree phytoextraction. Effective phytoremediation requires Cd-tolerant, high-biomass species and preferential Cd allocation to stems. This study evaluated the phytoremediation potential of four forest species (Cariniana pyriformis Miers, Terminalia superba Engl. and Diels, Swietenia macrophylla King, and Cedrela odorata L.) under cadmium (Cd) exposure. C. pyriformis exhibited hypertolerance, showing minimal biomass reduction (less than 15%, changing from 1.619 to 1.343 g plant−1) under excess Cd conditions, compared to Cedrela odorata and T. superba, which showed significant biomass reductions. C. pyriformis and T. superba showed notable Cd accumulation in stems (652.99 and 635.39 mg Cd kg−1), an essential feature for wood tree-mediated phytoextraction, while C. odorata allocated more Cd to leaves (35.35 mg Cd kg−1). C. pyriformis maintained high photosynthesis (12.8 μmol CO2 m−2 s−1), light use efficiency (0.086 mol CO2 mol photons−1), and an increased relative growth rate (0.575 g g−1 day−1) under Cd exposure. Overall, C. pyriformis demonstrated significant potential for use in phytoremediation due to its high Cd tolerance (84%), efficient allocation to stems (17%), and sustained physiological performance under Cd exposure. Conversely, C. odorata allocates Cd to leaves (16%), which can reintroduce Cd into the soil, and exhibits a low tolerance index (54%) under higher cadmium contamination. Further studies are still needed to understand the specific mechanisms of Cd accumulation in stems of promising species like C. pyriformis and T. superba.
format article
author L. Carvalho, Fabricio E.
Montenegro, Andrea C.
Escobar Pachajoa, Laura D.
Rojas Molina, Jairo
Camacho Diaz, Jorge E.
Rengifo Estrada, Gersain A.
author_facet L. Carvalho, Fabricio E.
Montenegro, Andrea C.
Escobar Pachajoa, Laura D.
Rojas Molina, Jairo
Camacho Diaz, Jorge E.
Rengifo Estrada, Gersain A.
author_sort L. Carvalho, Fabricio E.
title Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry
title_short Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry
title_full Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry
title_fullStr Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry
title_full_unstemmed Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry
title_sort phytoextraction and cd allocation to the stem of woody species used in cacao agroforestry
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2025
url https://www.mdpi.com/2223-7747/14/7/1101
http://hdl.handle.net/20.500.12324/41150
https://doi.org/10.3390/plants14071101
work_keys_str_mv AT lcarvalhofabricioe phytoextractionandcdallocationtothestemofwoodyspeciesusedincacaoagroforestry
AT montenegroandreac phytoextractionandcdallocationtothestemofwoodyspeciesusedincacaoagroforestry
AT escobarpachajoalaurad phytoextractionandcdallocationtothestemofwoodyspeciesusedincacaoagroforestry
AT rojasmolinajairo phytoextractionandcdallocationtothestemofwoodyspeciesusedincacaoagroforestry
AT camachodiazjorgee phytoextractionandcdallocationtothestemofwoodyspeciesusedincacaoagroforestry
AT rengifoestradagersaina phytoextractionandcdallocationtothestemofwoodyspeciesusedincacaoagroforestry
_version_ 1842255837192519680
spelling RepoAGROSAVIA411502025-08-29T03:00:58Z Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry L. Carvalho, Fabricio E. Montenegro, Andrea C. Escobar Pachajoa, Laura D. Rojas Molina, Jairo Camacho Diaz, Jorge E. Rengifo Estrada, Gersain A. Investigación agropecuaria - A50 Theobroma cacao Agroforestería Cadmio Metal pesado Cacao http://aims.fao.org/aos/agrovoc/c_7713 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_1178 http://aims.fao.org/aos/agrovoc/c_2223 Global cacao production, primarily led by African countries, is facing a crisis, which presents growth potential for South American countries like Colombia, Peru, and Ecuador. However, a significant challenge for these countries is cadmium (Cd) contamination in cacao beans. Agroforestry systems with cacao (CAFSs) improve soil health and can remediate Cd through tree phytoextraction. Effective phytoremediation requires Cd-tolerant, high-biomass species and preferential Cd allocation to stems. This study evaluated the phytoremediation potential of four forest species (Cariniana pyriformis Miers, Terminalia superba Engl. and Diels, Swietenia macrophylla King, and Cedrela odorata L.) under cadmium (Cd) exposure. C. pyriformis exhibited hypertolerance, showing minimal biomass reduction (less than 15%, changing from 1.619 to 1.343 g plant−1) under excess Cd conditions, compared to Cedrela odorata and T. superba, which showed significant biomass reductions. C. pyriformis and T. superba showed notable Cd accumulation in stems (652.99 and 635.39 mg Cd kg−1), an essential feature for wood tree-mediated phytoextraction, while C. odorata allocated more Cd to leaves (35.35 mg Cd kg−1). C. pyriformis maintained high photosynthesis (12.8 μmol CO2 m−2 s−1), light use efficiency (0.086 mol CO2 mol photons−1), and an increased relative growth rate (0.575 g g−1 day−1) under Cd exposure. Overall, C. pyriformis demonstrated significant potential for use in phytoremediation due to its high Cd tolerance (84%), efficient allocation to stems (17%), and sustained physiological performance under Cd exposure. Conversely, C. odorata allocates Cd to leaves (16%), which can reintroduce Cd into the soil, and exhibits a low tolerance index (54%) under higher cadmium contamination. Further studies are still needed to understand the specific mechanisms of Cd accumulation in stems of promising species like C. pyriformis and T. superba. Cacao-Theobroma cacao 2025-08-28T20:19:05Z 2025-08-28T20:19:05Z 2025-04 2025 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2223-7747/14/7/1101 2223-7747 http://hdl.handle.net/20.500.12324/41150 https://doi.org/10.3390/plants14071101 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Plants 14 7 1 20 Vanderschueren, R.; Argüello, D.; Blommaert, H.; Montalvo, D.; Barraza, F.; Maurice, L.; Schreck, E.; Schulin, R.; Lewis, C.; Vazquez, J.L.; et al. Mitigating the Level of Cadmium in Cacao Products: Reviewing the Transfer of Cadmium from Soil to Chocolate Bar. Sci. Total Environ. 2021, 781, 146779. [CrossRef] Vanderschueren, R.; Wantiez, L.; Blommaert, H.; Flores, J.; Chavez, E.; Smolders, E. Revealing the Pathways of Cadmium Uptake and Translocation in Cacao Trees (Theobroma cacao L.): A 108Cd Pulse-Chase Experiment. Sci. Total Environ. 2023, 869, 161816. [CrossRef] [PubMed] Laila, K.; Zug, M.; Alfredo, H.; Yupanqui, H.; Meyberg, F.; Cierjacks, J.S.; Cierjacks, A. Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water Air Soil Pollut. 2019, 230, 72. [CrossRef] Oliveira, B.R.M.; de Almeida, A.A.F.; Santos, N.d.A.; Pirovani, C.P. Tolerance Strategies and Factors That Influence the Cadmium Uptake by Cacao Tree. Sci. Hortic. 2022, 293, 110733. [CrossRef] Zhang, Q.; Wang, L.; Xiao, Y.; Liu, Q.; Zhao, F.; Li, X.; Tang, L.; Liao, X. Migration and Transformation of Cd in Four Crop Rotation Systems and Their Potential for Remediation of Cd-Contaminated Farmland in Southern China. Sci. Total Environ. 2023, 885, 163893. [CrossRef] Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the Potential Health Risks Associated with the Aluminium, Arsenic, Cadmium and Lead Content in Selected Fruits and Vegetables Grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [CrossRef] [PubMed] Engbersen, N.; Gramlich, A.; Lopez, M.; Schwarz, G.; Hattendorf, B.; Gutierrez, O.; Schulin, R. Cadmium Accumulation and Allocation in Different Cacao Cultivars. Sci. Total Environ. 2019, 678, 660–670. [CrossRef] Jaimes-Suárez, Y.Y.; Carvajal-Rivera, A.S.; Galvis-Neira, D.A.; Carvalho, F.E.L.; Rojas-Molina, J. Cacao Agroforestry Systems beyond the Stigmas: Biotic and Abiotic Stress Incidence Impact. Front. Plant Sci. 2022, 13, 921469. [CrossRef] Hernández-Núñez, H.E.; Gutiérrez-Montes, I.; Bernal-Núñez, A.P.; Gutiérrez-García, G.A.; Suárez, J.C.; Casanoves, F.; Flora, C.B. Cacao Cultivation as a Livelihood Strategy: Contributions to the Well-Being of Colombian Rural Households. Agric. Hum. Values 2022, 39, 201–216. [CrossRef] . Pérez-Zuñiga, J.I.; Rojas-Molina, J.; Zabala-Perilla, A.F. Plant Spacing Assessment in Cacao (Theobroma cacao L.) Agroforestry Systems in the Colombian Pacific Region. Agron. Colomb. 2021, 39, 426–437. [CrossRef] Amerino, J.; Apedo, C.K.; Anang, B.T. Factors Influencing Adoption of Cacao Agroforestry in Ghana: Analysis Based on Tree Density Choice. Sustain. Environ. 2024, 10, 2296162. [CrossRef] Zequeira-Larios, C.; Santiago-Alarcon, D.; MacGregor-Fors, I.; Castillo-Acosta, O. Tree Diversity and Composition in Mexican Traditional Smallholder Cacao Agroforestry Systems. Agrofor. Syst. 2021, 95, 1589–1602. [CrossRef] Deheuvels, O.; Avelino, J.; Somarriba, E.; Malezieux, E. Vegetation Structure and Productivity in Cacao-Based Agroforestry Systems in Talamanca, Costa Rica. Agric. Ecosyst. Environ. 2012, 149, 181–188. [CrossRef] Esquivel, M.J.; Vilchez-Mendoza, S.; Harvey, C.A.; Ospina, M.A.; Somarriba, E.; Deheuvels, O.; Filho, E.d.M.V.; Haggar, J.; Detlefsen, G.; Cerdan, C.; et al. Patterns of Shade Plant Diversity in Four Agroforestry Systems across Central America: A Meta-Analysis. Sci. Rep. 2023, 13, 8538. [CrossRef] Asitoakor, B.K.; Vaast, P.; Ræbild, A.; Ravn, H.P.; Eziah, V.Y.; Owusu, K.; Mensah, E.O.; Asare, R. Selected Shade Tree Species Improved Cacao Yields in Low-Input Agroforestry Systems in Ghana. Agric. Syst. 2022, 202, 103476. [CrossRef] González-Valdivia, N.A.; Cetzal-Ix, W.; Basu, S.K.; Casanova-Lugo, F.; Martínez-Puc, J.F. Diversity of Trees in the Mesoamerican Agroforestry System. In Biodiversity and Conservation of Woody Plants; Springer: Cham, Switzerland, 2017; ISBN 9783319664262. Prato, A.I.; Sánchez, S.N.; Zuluaga, J.J.; De Souza, P.V.D. Substrates, Seedling Age and Environment in the Initial Growth of Cariniana pyriformis Miers. Floresta 2020, 50, 1287–1296. [CrossRef] Rojas-Molina, J.; Caicedo, V.; Jaimes, Y. Dinámica de Descomposición de La Biomasa En Sistemas Agroforestales Con Theobroma cacao L., Rionegro, Santander (Colombia). Agron. Colomb. 2017, 35, 182–189. [CrossRef] Rojas-Molina, J.; Ortiz-Cabralez, L.; Escobar-Pachajoa, L.; Rojas-Buitrago, M.; Jaimes-Suarez, Y. Decomposition and Release of Nutrients in Biomass Generated by Cacao (Theobroma cacao L.) Pruning in Rionegro, Santander, Colombia. Agron. Mesoam. 2021, 32, 888–900. [CrossRef] Conceição, S.S.; Cruz, F.J.R.; Lima, E.U.; Lima, V.U.; Teixeira, J.S.S.; Sousa, D.J.P.d.; Yakuwa, T.K.M.; Barbosa, A.V.C.; Neto, C.F.d.O. Cadmium Toxicity and Phytoremediation in Trees—A Review. Aust. J. Crop Sci. 2020, 14, 857–870. [CrossRef] Brooks, R.R.; Chambers, M.F.; Nicks, L.J.; Robinson, B.H. Phytomining. Trends Plant Sci. 1998, 3, 359–362. [CrossRef] Fan, K.-C.; Hsi, H.-C.; Chen, C.-W.; Lee, H.-L.; Hseu, Z.-Y. Cadmium Accumulation and Tolerance of Mahogany (Swietenia macrophylla) Seedlings for Phytoextraction Applications. J. Environ. Manag. 2011, 92, 2818–2822. [CrossRef] Klang-Westin, E.; Eriksson, J. Potential of Salix as Phytoextractor for Cd on Moderately Contaminated Soils. Plant Soil 2003, 249, 127–137. [CrossRef] Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the Action? J. Geochem. Explor. 2015, 151, 34–40. [CrossRef] Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals from Contaminated Mining Sites: A Review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 168–214. [CrossRef] Gramlich, A.; Tandy, S.; Andres, C.; Chincheros Paniagua, J.; Armengot, L.; Schneider, M.; Schulin, R. Cadmium Uptake by Cacao Trees in Agroforestry and Monoculture Systems under Conventional and Organic Management. Sci. Total Environ. 2017, 580, 677–686. [CrossRef] [PubMed] Argüello, D.; Chavez, E.; Gutierrez, E.; Pittomvils, M.; Dekeyrel, J.; Blommaert, H.; Smolders, E. Soil Amendments to Reduce Cadmium in Cacao (Theobroma cacao L.): A Comprehensive Field Study in Ecuador. Chemosphere 2023, 324, 138318. [CrossRef] Kaur, B.; Singh, B.; Kaur, N.; Singh, D. Phytoremediation of Cadmium-Contaminated Soil through Multipurpose Tree Species. Agrofor. Syst. 2018, 92, 473–483. [CrossRef] Galvis, D.A.; Jaimes-Suárez, Y.Y.; Rojas Molina, J.; Ruiz, R.; Carvalho, F.E.L. Cadmium up Taking and Allocation in Wood Species Associated to Cacao Agroforestry Systems and Its Potential Role for Phytoextraction. Plants 2023, 12, 2930. [CrossRef] Lux, A.; Martinka, M.; Vaculík, M.; White, P.J. Root Responses to Cadmium in the Rhizosphere: A Review. J. Exp. Bot. 2011, 62, 21–37. CrossRef Sterckeman, T.; Thomine, S. Mechanisms of Cadmium Accumulation in Plants. CRC Crit. Rev. Plant Sci. 2020, 39, 322–359. [CrossRef] Lieth, J.H.; Reynolds, J.F. The Nonrectangular Hyperbola as a Photosynthetic Light Response Model: Geometrical Interpretation and Estimation of the Parameter. Photosynthetica 1987, 21, 363–365. Lane, P.; Gomez, E.; Chavez, W. A Poly Crisis in Cacao. In Proceedings of the 18th International Technology, Education and Development Conference, Valencia, Spain, 4–6 March 2024; Volume 1, pp. 4406–4413. [CrossRef] Gil, J.P.; López-Zuleta, S.; Quiroga-Mateus, R.Y.; Benavides-Erazo, J.; Chaali, N.; Bravo, D. Cadmium Distribution in Soils, Soil Litter and Cacao Beans: A Case Study from Colombia. Int. J. Environ. Sci. Technol. 2022, 19, 2455–2476. [CrossRef] Hernández-Nuñez, H.E.; Suárez, J.C.; Andrade, H.J.; Acosta, J.R.S.; Núñez, R.D.; Gutiérrez, D.R.; Gutiérrez, G.A.; GutiérrezMontes, I.; Casanoves, F. Interactions between Climate, Shade Canopy Characteristics and Cacao Production in Colombia. Front. Sustain. Food Syst. 2024, 8, 1295992. [CrossRef] Salazar, J.C.S.; Melgarejo, L.M.; Casanoves, F.; Di Rienzo, J.A.; DaMatta, F.M.; Armas, C. Photosynthesis Limitations in Cacao Leaves under Different Agroforestry Systems in the Colombian Amazon. PLoS ONE 2018, 13, e0206149. [CrossRef] Blaylock, M.J. Field Demonstrations of Phytoremediation of Lead-Contaminated Soils. In Phytoremediation of Contaminated Soil and Water, edited by Norman Terry and Gary Banuelos, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; 12p León-Moreno, C.; Rojas-Molina, J.; Castilla-Campos, C. Physicochemical Characteristics of Cacao (Theobroma cacao L.) Soils in Colombia: Are They Adequate to Improve Productivity? Agron. Colomb. 2019, 37, 52–62. [CrossRef] Bedair, H.; Ghosh, S.; Abdelsalam, I.M.; Keerio, A.A.; AlKafaas, S.S. Potential Implementation of Trees to Remediate Contaminated Soil in Egypt. Environ. Sci. Pollut. Res. 2022, 29, 78132–78151. [CrossRef] [PubMed] Pouresmaieli, M.; Ataei, M.; Forouzandeh, P.; Azizollahi, P.; Mahmoudifard, M. Recent Progress on Sustainable Phytoremediation of Heavy Metals from Soil. J. Environ. Chem. Eng. 2022, 10, 108482. [CrossRef] Mayerová, M.; Petrová, Š.; Madaras, M.; Lipavský, J.; Šimon, T.; Vanˇek, T. Non-Enhanced Phytoextraction of Cadmium, Zinc, and Lead by High-Yielding Crops. Environ. Sci. Pollut. Res. 2017, 24, 14706–14716. [CrossRef] Tiwari, J.; Kumar, A.; Kumar, N. Phytoremediation Potential of Industrially Important and Biofuel Plants: Azadirachta Indica and Acacia Nilotica. In Phytoremediation Potential of Bioenergy Plants; Springer: Singapore, 2017; pp. 211–254. [CrossRef] Soliman, W.S.; Sugiyama, S. Phytoremediation and Tolerance Capacity of Moringa to Cadmium and Its Relation to Nutrients Content. Poll. Res. 2016, 35, 23–27. Zhang, W.; Cai, Y.; Tu, C.; Ma, L.Q. Arsenic Speciation and Distribution in an Arsenic Hyperaccumulating Plant. Sci. Total Environ. 2002, 300, 167–177. [CrossRef] Ramírez-Flores, V.A.; Aranda Delgado, L.; Rico-Gray, V. Cambio de Uso de Suelo, Manejo Forestal y Sus Implicaciones En Las Interacciones Bióticas Asociadas a Cedrela odorata Linnaeus, Meliaceae. Cuad. De Biodivers. 2018, 55, 11–27. Dios, J.D.; Solorio, B.; García, O.T.; Germán, J.; Garnica, F.; Acosta, M.; Rueda, A. Ecuaciones Alométricas Para Estimar Biomasa y Carbono Aéreos de Cedrela odorata L. En Plantaciones Forestales Carbon from Cedrela odorata L. in Forest Plantations Introducción. Rev. Mex. Cienc. For. 2021, 12. [CrossRef] Arevalo-Hernandez, C.O.; Arevalo-Gardini, E.; Barraza, F.; Farfán, A.; He, Z.; Baligar, V.C. Growth and Nutritional Responses of Wild and Domesticated Cacao Genotypes to Soil Cd Stress. Sci. Total Environ. 2020, 763, 144021. [CrossRef] [PubMed] Mensah, E.O.; Ræbild, A.; Asare, R.; Amoatey, C.A.; Markussen, B.; Owusu, K.; Asitoakor, B.K.; Vaast, P. Combined Effects of Shade and Drought on Physiology, Growth, and Yield of Mature Cacao Trees. Sci. Total Environ. 2023, 2, 165657. [CrossRef] Jubany-Marí, T.; Munné-Bosch, S.; López-Carbonell, M.; Alegre, L. Hydrogen Peroxide Is Involved in the Acclimation of the Mediterranean Shrub, Cistus albidus L., to Summer Drought. J. Exp. Bot. 2009, 60, 107–120. [CrossRef] He, L.; Dai, Z.; Liu, X.; Tang, C.; Xu, J. Chemosphere Effect of Alkaline Lignin on Immobilization of Cadmium and Lead in Soils and the Associated Mechanisms. Chemosphere 2021, 281, 130969. [CrossRef] [PubMed] Romanenko, K. Molecular Mechanisms of Plant Adaptive Responses to Heavy Metals Stress. Cell Biol. Int. 2021, 45, 258–272. [CrossRef] Neves, G.Y.S.; Marchiosi, R.; Ferrarese, M.L.L.; Siqueira-Soares, R.C.; Ferrarese-Filho, O. Root Growth Inhibition and Lignification Induced by Salt Stress in Soybean. J. Agron. Crop Sci. 2010, 196, 467–473. [CrossRef] Sousa, R.T.; Paiva, A.L.S.; Carvalho, F.E.L.; Alencar, V.T.C.B.; Silveira, J.A.G. Ammonium Overaccumulation in Senescent Leaves as a Novel Exclusion Mechanism to Avoid Toxicity in Photosynthetically Active Rice Leaves. Environ. Exp. Bot. 2021, 186, 104452. [CrossRef] Julshamn, K.; Maage, A.; Norli, H.S.; Grobecker, K.H.; Jorhem, L.; Fecher, P.; Dowell, D. Determination of Arsenic, Cadmium, Mercury, and Lead in Foods by Pressure Digestion and Inductively Coupled Plasma/Mass Spectrometry: First Action 2013.06. J. AOAC Int. 2013, 96, 1101–1102. [CrossRef] Wilkins, D.A. The Measurement of Tolerance to Edaphic Factors by Means of Root Growth. New Phytol. 1978, 80, 623–633. [CrossRef] Amacher, M.C. Nickel, Cadmium, and Lead. In Methods of Soil Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1996; pp. 739–768. [CrossRef] Mehra, A.; Cordes, K.B.; Chopra, S.; Fountain, D. Distribution and Bioavailability of Metals in Soils in the Vicinity of a Copper Works in Staffordshire, UK. Chem. Speciat. Bioavailab. 1999, 11, 57–66. [CrossRef] Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [CrossRef] Flexas, J.; Ribas-Carbó, M.; Diaz-Espejo, A.; Galmés, J.; Medrano, H. Mesophyll Conductance to CO2 : Current Knowledge and Future Prospects. Plant Cell Environ. 2008, 31, 602–621. [CrossRef] [PubMed] Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I La Suiza Colombia Multidisciplinary Digital Publishing Institute (MDPI) Plants; Vol. 14, Núm. 7 (2025): Plants (Apr.);p. 1 - 20.