Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses

Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospec...

Full description

Bibliographic Details
Main Authors: Henao Rojas, Juan Camilo, Osorio, Edison, Isaza, Stephanie, Madronero Solarte, Inés Amelia, Sierra, Karina, Zapata Vahos, Isabel Cristina, Betancur Pérez, Jhon Fredy, Arboleda Valencia, Jorge W., Gallego, Adriana M.
Format: article
Language:Inglés
Published: Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/11/3559
http://hdl.handle.net/20.500.12324/38686
https://doi.org/10.3390/molecules27113559
id RepoAGROSAVIA38686
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Arreglo y sistemas de cultivo - F08
Mentha spicata
Antimicrobianos
Antioxidantes
Metabolómica
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_4747
http://aims.fao.org/aos/agrovoc/c_509
http://aims.fao.org/aos/agrovoc/c_511
http://aims.fao.org/aos/agrovoc/c_bb2cc69f
spellingShingle Arreglo y sistemas de cultivo - F08
Mentha spicata
Antimicrobianos
Antioxidantes
Metabolómica
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_4747
http://aims.fao.org/aos/agrovoc/c_509
http://aims.fao.org/aos/agrovoc/c_511
http://aims.fao.org/aos/agrovoc/c_bb2cc69f
Henao Rojas, Juan Camilo
Osorio, Edison
Isaza, Stephanie
Madronero Solarte, Inés Amelia
Sierra, Karina
Zapata Vahos, Isabel Cristina
Betancur Pérez, Jhon Fredy
Arboleda Valencia, Jorge W.
Gallego, Adriana M.
Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses
description Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospecting spearmint from three origins: Colombia (Col), Mexico (Mex), and Egypt (Eg). We performed a biological activity analysis, such as FRAP, DPPH, and ABTS, inhibition potential of S. pyogenes, K. pneumoniae, E. coli, P. aeuroginosa, S. aureus, S aureus Methicillin-Resistant, and E. faecalis. Furthermore, we performed chemical assays, such as total polyphenol and rosmarinic acid, and untargeted metabolomics via HPLC-MS/MS. Finally, we developed a causality analysis to integrate biological activities with chemical analyses. We found significant differences between the samples for the total polyphenol and rosmarinic acid contents, FRAP, and inhibition analyses for Methicillin-Resistant S. aureus and E. faecalis. Also, clear metabolic differentiation was observed among the three commercial materials evaluated. These results allow us to propose data-driven uses for the three spearmint materials available in current markets.
format article
author Henao Rojas, Juan Camilo
Osorio, Edison
Isaza, Stephanie
Madronero Solarte, Inés Amelia
Sierra, Karina
Zapata Vahos, Isabel Cristina
Betancur Pérez, Jhon Fredy
Arboleda Valencia, Jorge W.
Gallego, Adriana M.
author_facet Henao Rojas, Juan Camilo
Osorio, Edison
Isaza, Stephanie
Madronero Solarte, Inés Amelia
Sierra, Karina
Zapata Vahos, Isabel Cristina
Betancur Pérez, Jhon Fredy
Arboleda Valencia, Jorge W.
Gallego, Adriana M.
author_sort Henao Rojas, Juan Camilo
title Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses
title_short Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses
title_full Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses
title_fullStr Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses
title_full_unstemmed Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses
title_sort towards bioprospection of commercial materials of mentha spicata l. using a combined strategy of metabolomics and biological activity analyses
publisher Multidisciplinary Digital Publishing Institute
publishDate 2023
url https://www.mdpi.com/1420-3049/27/11/3559
http://hdl.handle.net/20.500.12324/38686
https://doi.org/10.3390/molecules27113559
work_keys_str_mv AT henaorojasjuancamilo towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT osorioedison towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT isazastephanie towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT madronerosolarteinesamelia towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT sierrakarina towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT zapatavahosisabelcristina towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT betancurperezjhonfredy towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT arboledavalenciajorgew towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
AT gallegoadrianam towardsbioprospectionofcommercialmaterialsofmenthaspicatalusingacombinedstrategyofmetabolomicsandbiologicalactivityanalyses
_version_ 1808106183917043712
spelling RepoAGROSAVIA386862023-12-14T03:00:52Z Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses Henao Rojas, Juan Camilo Osorio, Edison Isaza, Stephanie Madronero Solarte, Inés Amelia Sierra, Karina Zapata Vahos, Isabel Cristina Betancur Pérez, Jhon Fredy Arboleda Valencia, Jorge W. Gallego, Adriana M. Arreglo y sistemas de cultivo - F08 Mentha spicata Antimicrobianos Antioxidantes Metabolómica Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_4747 http://aims.fao.org/aos/agrovoc/c_509 http://aims.fao.org/aos/agrovoc/c_511 http://aims.fao.org/aos/agrovoc/c_bb2cc69f Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospecting spearmint from three origins: Colombia (Col), Mexico (Mex), and Egypt (Eg). We performed a biological activity analysis, such as FRAP, DPPH, and ABTS, inhibition potential of S. pyogenes, K. pneumoniae, E. coli, P. aeuroginosa, S. aureus, S aureus Methicillin-Resistant, and E. faecalis. Furthermore, we performed chemical assays, such as total polyphenol and rosmarinic acid, and untargeted metabolomics via HPLC-MS/MS. Finally, we developed a causality analysis to integrate biological activities with chemical analyses. We found significant differences between the samples for the total polyphenol and rosmarinic acid contents, FRAP, and inhibition analyses for Methicillin-Resistant S. aureus and E. faecalis. Also, clear metabolic differentiation was observed among the three commercial materials evaluated. These results allow us to propose data-driven uses for the three spearmint materials available in current markets. 2023-12-13T19:53:20Z 2023-12-13T19:53:20Z 2022-05-31 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/1420-3049/27/11/3559 1420-3049 http://hdl.handle.net/20.500.12324/38686 https://doi.org/10.3390/molecules27113559 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Molecules 27 11 1 15 Akdo ˘gan, M.; Tamer, M.N.; Cüre, E.; Cüre, M.C.; Köro ˘glu, B.K.; Deliba¸s, N. Effect of spearmint (Mentha spicata Labiatae) teas on androgen levels in women with hirsutism. Phytother. Res. 2007, 21, 444–447. [CrossRef] Begaa, S.; Messaoudi, M.; Ouanezar, A.; Hamidatou, L.; Malki, A. Chemical elements of Algerian Mentha spicata L. used in the treatment of digestive system disorders by employing instrumental neutron activation analysis technique. J. Radioanal. Nucl. Chem. 2018, 317, 1107–1112. [CrossRef] Mahendran, G.; Verma, S.K.; Rahman, L.-U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol. 2021, 278, 114266. [CrossRef] Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and Volatile Composition of a Dry Spearmint (Mentha spicata L.) Extract. Molecules 2016, 21, 1007. [CrossRef] Villagran, E.; Henao-Rojas, J.C.; Franco, G. Thermo-Environmental Performance of Four Different Shapes of Solar Greenhouse Dryer with Free Convection Operating Principle and No Load on Product. Fluids 2021, 6, 183. [CrossRef] Zaidi, S.; Dahiya, P. In vitro antimicrobial activity, phytochemical analysis and total phenolic content of essential oil from Mentha spicata and Mentha piperita. Int. Food Res. J. 2015, 22, 16. Chauhan, S.S.; Agarwal, R. Evaluation of antibacterial activity of volatile oil from Mentha spicata L. J. Drug Deliv. Ther. 2013, 3, 120–121. [CrossRef] Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [CrossRef] Zhang, L.-L.; Chen, Y.; Li, Z.-J.; Li, X.; Fan, G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: A review. Food Funct. 2022, 13, 3110–3132. [CrossRef] Eftekhari, A.; Khusro, A.; Ahmadian, E.; Dizaj, S.M.; Hasanzadeh, A.; Cucchiarini, M. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab. J. Chem. 2021, 14, 103106. [CrossRef] Pearson, W.; Fletcher, R.S.; Kott, L.S.; Hurtig, M.B. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata. BMC Complementary Altern. Med. 2010, 10, 19. [CrossRef] Kee, L.A.; Shori, A.B.; Baba, A.S. Bioactivity and health effects of Mentha spicata. Food Nutr. Metab. 2017, 5, 1–2. Farnad, N.; Heidari, R.; Aslanipour, B. Phenolic composition and comparison of antioxidant activity of alcoholic extracts of Peppermint (Mentha piperita). J. Food Meas. Charact. 2014, 8, 113–121. [CrossRef] Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Klimek-Szczykutowicz, M.; El-Ansary, D.O.; Mahmoud, E.A. Polyphenol Profile and Antimicrobial and Cytotoxic Activities of Natural Mentha × piperita and Mentha longifolia Populations in Northern Saudi Arabia. Processes 2020, 8, 479. [CrossRef] Uribe, E.; Marín, D.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, A. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chem. 2016, 190, 559–565. [CrossRef] Pistelli, L.; Sansone, C.; Smerilli, A.; Festa, M.; Noonan, D.M.; Albini, A.; Brunet, C. MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Mar. Drugs 2021, 19, 354. [CrossRef] Tominaga, K.; Hongo, N.; Karato, M.; Yamashita, E. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim. Pol. 2012, 59, 43–47. [CrossRef] Davinelli, S.; Nielsen, M.E.; Scapagnini, G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients 2018, 10, 522. [CrossRef] Mansourabadi, A.H.; Sadeghi, H.M.; Razavi, N.; Rezvani, E. Anti-inflammatory and Analgesic Properties of Salvigenin, Salvia officinalis Flavonoid Extracted. J. Future Nat. Prod. 2016, 2, 31–41. Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Health Res. Rev. 2017, 18, 167–176. [CrossRef] González-Vallinas, M.; Molina, S.; Vicente, G.; de la Cueva, A.; Vargas, T.; Santoyo, S.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol. Res. 2013, 72, 61–68. [CrossRef] Ngo, Y.L.; Lau, C.H.; Chua, L.S. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem. Toxicol. 2018, 121, 687–700. [CrossRef] Caruso, G.; Godos, J.; Privitera, A.; Lanza, G.; Castellano, S.; Chillemi, A.; Bruni, O.; Ferri, R.; Caraci, F.; Grosso, G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer’s Disease. Nutrients 2022, 14, 819. [CrossRef] Liang, C.; Ju, W.; Pei, S.; Tang, Y.; Xiao, Y. Pharmacological Activities and Synthesis of Esculetin and Its Derivatives: A Mini-Review. Molecules 2017, 22, 387. [CrossRef] Casciaro, B.; Moros, M.; Rivera-Fernández, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater. 2017, 47, 170–181. [CrossRef] Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; ModarresiGhazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [CrossRef] . Alsaraf, S.; Hadi, Z.; Akhtar, M.J.; Khan, S.A. Chemical profiling, cytotoxic and antioxidant activity of volatile oil isolated from the mint (Mentha spicata L.,) grown in Oman. Biocatal. Agric. Biotechnol. 2021, 34, 102034. [CrossRef] Yousuf, T.; Akter, R.; Ahmed, J.; Mazumdar, S.; Talukder, D.; Nandi, N.C.; Nurulamin, M. Evaluation of acute oral toxicity, cytotoxicity, antidepressant and antioxidant activities of Japanese mint (Mentha arvensis L.) oil. Phytomedicine Plus 2021, 1, 100140. [CrossRef] Bardaweel, S.K.; Bakchiche, B.; Alsalamat, H.A.; Rezzoug, M.; Gherib, A.; Flamini, G. Chemical composition, antioxidant, antimicrobial and Antiproliferative activities of essential oil of Mentha spicata L. (Lamiaceae) from Algerian Saharan atlas. BMC Complementary Altern. Med. 2018, 18, 201. [CrossRef] Golparvar, A.R.; Hadipanah, A.; Mehrabi, A.M. Diversity in chemical composition from two ecotypes of (Mentha longifolia L.) and (Mentha spicata L.) in Iran climatic conditions. J. Biodivers. Environ. Sci. 2015, 6, 26–33. Devi, A.; Sharma, G. Morphological, phenological and cytological comparison of Mentha longifolia and M. spicata from sub-tropical and temperate regions of Jammu province (J&K). Vegetos 2022, 35, 179–187. [CrossRef] López-Hernández, F.; Cortés, A.J. Whole Transcriptome Sequencing Unveils the Genomic Determinants of Putative Somaclonal Variation in Mint (Mentha L.). Mol. Sci. 2022, 23, 5291. [CrossRef] [PubMed] Martínez-Tomé, M.; Jiménez-Monreal, A.M.; García-Jiménez, L.; Almela, L.; García-Diz, L.; Mariscal-Arcas, M.; Murcia, M.A. Assessment of antimicrobial activity of coffee brewed in three different ways from different origins. Eur. Food Res. Technol. 2011, 233, 497. [CrossRef] Farjana, A.; Zerin, N.; Kabir, M.S. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pac. J. Trop. Dis. 2014, 4, S920–S923. [CrossRef] Suárez-Quiroz, M.L.; Taillefer, W.; López Méndez, E.M.; González-Ríos, O.; Villeneuve, P.; Figueroa-Espinoza, M.-C. Antibacterial Activity and Antifungal and Anti-Mycotoxigenic Activities Against A spergillus flavus and A. ochraceus of Green Coffee Chlorogenic Acids and Dodecyl Chlorogenates. J. Food Saf. 2013, 33, 360–368. [CrossRef] Chaves-Ulate, E.; Esquivel-Rodríguez, P. Ácidos clorogénicos presentes en el café: Capacidad antimicrobiana y antioxidante. Agron. Mesoam. 2019, 30, 299–311. [CrossRef] Serino, E.; Chahardoli, A.; Badolati, N.; Sirignano, C.; Jalilian, F.; Mojarrab, M.; Farhangi, Z.; Rigano, D.; Stornaiuolo, M.; Shokoohinia, Y.; et al. Salvigenin, a Trimethoxylated Flavone from Achillea Wilhelmsii C. Koch, Exerts Combined Lipid-Lowering and Mitochondrial Stimulatory Effects. Antioxidants 2021, 10, 1042. [CrossRef] Zhang, L.; Xie, Q.; Li, X. Esculetin: A review of its pharmacology and pharmacokinetics. Phytother. Res. 2022, 36, 279–298. [CrossRef] Wang, X.; Du, J.; Zhou, J. Antibiotic activities of extracts from Prunus mume fruit against food-borne bacterial pathogens and its active components. Ind. Crops Prod. 2019, 133, 409–413. [CrossRef] Jiménez, N.; Carrillo-Hormaza, L.; Pujol, A.; Álzate, F.; Osorio, E.; Lara-Guzman, O. Antioxidant capacity and phenolic content of commonly used anti-inflammatory medicinal plants in Colombia. Ind. Crops Prod. 2015, 70, 272–279. [CrossRef] Park, Y.J.; Baek, S.-A.; Choi, Y.; Kim, J.K.; Park, S.U. Metabolic Profiling of Nine Mentha Species and Prediction of Their Antioxidant Properties Using Chemometrics. Molecules 2019, 24, 258. [CrossRef] [PubMed] Scherer, R.; Lemos, M.F.; Lemos, M.F.; Martinelli, G.C.; Martins, J.D.L.; da Silva, A.G. Antioxidant and antibacterial activities and composition of Brazilian spearmint (Mentha spicata L.). Ind. Crops Prod. 2013, 50, 408–413. [CrossRef] Fatiha, B.; Didier, H.; Naima, G.; Khodir, M.; Martin, K.; Léocadie, K.; Caroline, S.; Mohamed, C.; Pierre, D. Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Ind. Crops Prod. 2015, 74, 722–730. [CrossRef] Sõukand, R.; Pieroni, A.; Biró, M.; Dénes, A.; Dogan, Y.; Hajdari, A.; Kalle, R.; Reade, B.; Mustafa, B.; Nedelcheva, A.; et al. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. J. Ethnopharmacol. 2015, 170, 284–296. [CrossRef] Bhatia, H.; Sharma, Y.P.; Manhas, R.K.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol. 2014, 151, 1005–1018. [CrossRef] Biswas, A.K.; Chatli, M.K.; Sahoo, J. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chem. 2012, 133, 467–472. [CrossRef] Sierra, K.; Naranjo, L.; Carrillo-Hormaza, L.; Franco, G.; Osorio, E. Spearmint (Mentha spicata L.) Phytochemical Profile: Impact of Pre/Post-Harvest Processing and Extractive Recovery. Molecules 2022, 27, 2243. [CrossRef] Agudelo, C.; Bravo, K.; Ramírez-Atehortúa, A.; Torres, D.; Carrillo-Hormaza, L.; Osorio, E. Chemical and Skincare Property Characterization of the Main Cocoa Byproducts: Extraction Optimization by RSM Approach for Development of Sustainable Ingredients. Molecules 2021, 26, 7429. [CrossRef] Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [CrossRef] Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [CrossRef] Mesa-Vanegas, A.M.A.; Zapata-Uribe, S.n.; Arana, L.M.; Zapata, I.C.; Monsalve, Z.; Rojano, B.J. Actividad antioxidante de extractos de diferente polaridad de Ageratum conyzoides L. Chem. Lat. Am. Caribb. Bull. Med. Aromat. Plants 2015, 14, 1–10. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [CrossRef] [PubMed] Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [CrossRef] [PubMed] Chong, J.; Xia, J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018, 34, 4313–4314. [CrossRef] Sofina, E.V. Agricultural land-use optimization by farms based on quality management: Lines of research. Int. J. Qual. Res. 2019, 13, 915. [CrossRef] Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Multidisciplinary Digital Publishing Institute Basilea (Suiza) Molecules; Vol. 27, Núm. 11 (2022): Molecules;p. 1 -15.