Métodos de aplicación de biofertilizantes bacterianos

El éxito de la inoculación depende tanto de la efectividad de las bacterias utilizadas como de la tecnología empleada para su aplicación. La razón del uso de inoculantes formulados es simple: con la inoculación de bacterias en suspensión aplicada directamente en el suel...

Descripción completa

Detalles Bibliográficos
Autores principales: González de Bashan, Luz Estela, Legorreta, Manuel Moreno, Hernández, Juan Pablo, Mendoza Labrador, Jonathan Alberto
Formato: book part
Lenguaje:Español
Publicado: Corporación colombiana de investigación agropecuaria - AGROSAVIA 2022
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12324/37082
id RepoAGROSAVIA37082
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Genética vegetal y fitomejoramiento - F30
Fisiología y bioquímica de la planta - F60
Biofertilizantes
Gestión ambiental
Transversal
http://aims.fao.org/aos/agrovoc/c_24975
http://aims.fao.org/aos/agrovoc/c_37875
spellingShingle Genética vegetal y fitomejoramiento - F30
Fisiología y bioquímica de la planta - F60
Biofertilizantes
Gestión ambiental
Transversal
http://aims.fao.org/aos/agrovoc/c_24975
http://aims.fao.org/aos/agrovoc/c_37875
González de Bashan, Luz Estela
Legorreta, Manuel Moreno
Hernández, Juan Pablo
Mendoza Labrador, Jonathan Alberto
Métodos de aplicación de biofertilizantes bacterianos
description El éxito de la inoculación depende tanto de la efectividad de las bacterias utilizadas como de la tecnología empleada para su aplicación. La razón del uso de inoculantes formulados es simple: con la inoculación de bacterias en suspensión aplicada directamente en el suelo, sin una formulación adecuada, la población de bacterias se ve rápidamente diezmada. Este resultado, combinado con una pobre producción de biomasa bacteriana, la dificultad para mantener la actividad bacteriana en la rizósfera y el estado fisiológico de las bacterias en el momento de la aplicación, puede afectar la concentración de pgpb en la rizósfera. Para obtener una respuesta positiva de la planta, es esencial contar con un número mínimo de células viables, el cual difiere según la especie.La heterogeneidad característica de los suelos es el obstáculo más importante en la inoculación. En algunas ocasiones, las bacterias introducidas pueden encontrar todos los nichos de la rizósfera colonizados por otros microorganismos, por lo que las bacterias introducidas sin protección deben competir con la microflora nativa (a menudo mejor adaptada) y enfrentar la depredación por parte de la microfauna del suelo. Como respuesta, una función importante de cualquier formulación es proporcionar un microambiente más adecuado, así como protección física durante un tiempo prolongado. Las formulaciones empleadas en campo deben diseñarse para proporcionar una fuente confiable de bacterias que puedan sobrevivir en la rizósfera y estar disponibles para los cultivos cuando sea necesario (Bashan et al., 2014; Calvo et al., 2014; Herrmann & Lesueur, 2013).
format book part
author González de Bashan, Luz Estela
Legorreta, Manuel Moreno
Hernández, Juan Pablo
Mendoza Labrador, Jonathan Alberto
author_facet González de Bashan, Luz Estela
Legorreta, Manuel Moreno
Hernández, Juan Pablo
Mendoza Labrador, Jonathan Alberto
author_sort González de Bashan, Luz Estela
title Métodos de aplicación de biofertilizantes bacterianos
title_short Métodos de aplicación de biofertilizantes bacterianos
title_full Métodos de aplicación de biofertilizantes bacterianos
title_fullStr Métodos de aplicación de biofertilizantes bacterianos
title_full_unstemmed Métodos de aplicación de biofertilizantes bacterianos
title_sort métodos de aplicación de biofertilizantes bacterianos
publisher Corporación colombiana de investigación agropecuaria - AGROSAVIA
publishDate 2022
url http://hdl.handle.net/20.500.12324/37082
work_keys_str_mv AT gonzalezdebashanluzestela metodosdeaplicaciondebiofertilizantesbacterianos
AT legorretamanuelmoreno metodosdeaplicaciondebiofertilizantesbacterianos
AT hernandezjuanpablo metodosdeaplicaciondebiofertilizantesbacterianos
AT mendozalabradorjonathanalberto metodosdeaplicaciondebiofertilizantesbacterianos
_version_ 1808105932329058304
spelling RepoAGROSAVIA370822023-02-23T20:44:33Z Métodos de aplicación de biofertilizantes bacterianos González de Bashan, Luz Estela Legorreta, Manuel Moreno Hernández, Juan Pablo Mendoza Labrador, Jonathan Alberto Genética vegetal y fitomejoramiento - F30 Fisiología y bioquímica de la planta - F60 Biofertilizantes Gestión ambiental Transversal http://aims.fao.org/aos/agrovoc/c_24975 http://aims.fao.org/aos/agrovoc/c_37875 El éxito de la inoculación depende tanto de la efectividad de las bacterias utilizadas como de la tecnología empleada para su aplicación. La razón del uso de inoculantes formulados es simple: con la inoculación de bacterias en suspensión aplicada directamente en el suelo, sin una formulación adecuada, la población de bacterias se ve rápidamente diezmada. Este resultado, combinado con una pobre producción de biomasa bacteriana, la dificultad para mantener la actividad bacteriana en la rizósfera y el estado fisiológico de las bacterias en el momento de la aplicación, puede afectar la concentración de pgpb en la rizósfera. Para obtener una respuesta positiva de la planta, es esencial contar con un número mínimo de células viables, el cual difiere según la especie.La heterogeneidad característica de los suelos es el obstáculo más importante en la inoculación. En algunas ocasiones, las bacterias introducidas pueden encontrar todos los nichos de la rizósfera colonizados por otros microorganismos, por lo que las bacterias introducidas sin protección deben competir con la microflora nativa (a menudo mejor adaptada) y enfrentar la depredación por parte de la microfauna del suelo. Como respuesta, una función importante de cualquier formulación es proporcionar un microambiente más adecuado, así como protección física durante un tiempo prolongado. Las formulaciones empleadas en campo deben diseñarse para proporcionar una fuente confiable de bacterias que puedan sobrevivir en la rizósfera y estar disponibles para los cultivos cuando sea necesario (Bashan et al., 2014; Calvo et al., 2014; Herrmann & Lesueur, 2013). Corporación colombiana de investigación agropecuaria - AGROSAVIA 2022-04-08T20:54:54Z 2022-04-08T20:54:54Z 2021 2021 book part Capítulo http://purl.org/coar/resource_type/c_3248 info:eu-repo/semantics/bookPart https://purl.org/redcol/resource_type/CAP_LIB http://purl.org/coar/version/c_970fb48d4fbd8a85 http://hdl.handle.net/20.500.12324/37082 reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa 176 197 Albareda, M., Rodríguez-Navarro, D. N., Camacho, M., & Temprano, F. J. (2008). Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biology and Biochemistry,40(11), 2.771-2.779. https://doi.org/10.1016/j.soilbio.2008.07.021 Amer, G. A., & Utkhede, R. S. (2000). Development of formulations of biological agents for management of root rot of lettuce and cucumber. Canadian Journal of Microbiology, 46(9), 809-816. https://doi.org/10.1139/w00-063 Amiet-Charpentier, C., Gadille, P., Digat, B., & Benoit, J. P. (1998). Microencapsulation of rhizobacteria by spray-drying: Formulation and survival studies. Journal of Microencapsulation, 15(5), 639-659. https://doi.org/10.3109/02652049809008247 Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, 16(4), 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2 ashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant and Soil,378(1), 1-33. https://doi.org/10.1007/s11104-013-1956-x Bashan, Y., & Levanony, H. (1987). Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. Journal of General Microbiology, 133(12), 3.473-3.480. https://doi.org/10.1099/00221287-133-12-3473 Bashan, Y., Salazar, B., & Puente, M. E. (2009). Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biology and Fertility of Soils, 45(6), 655-662. https://doi.org/10.1007/s00374-009-0368-9 Bashan, Y., Salazar, B., Puente, M. E., Bacilio, M., & Linderman, R. (2009). Enhanced establishment and growth of giant cardon cactus in an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plant growth-promoting microorganisms and compost. Biology and Fertility of Soils, 45(6), 585-594. https://doi.org/10.1007/s00374-009-0367-x Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014). Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5, artículo 148. https://doi.org/10.3389/fmicb.2014.00148 Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8 Campos, D. C., Acevedo, F., Morales, E., Aravena, J., Amiard, V., Jorquera, M. A., Inostroza, N. G., & Rubilar, M. (2014). Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World Journal of Microbiology and Biotechnology, 30(9), 2.371-2.378. https://doi.org/10.1007/s11274-014-1662-8 Compant, S., Brader, G., Muzammil, S., Sessitsch, A., Lebrihi, A., & Mathieu, F. (2013). Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl,58(4), 435-455. https://doi.org/10.1007/s10526-012-9479-6 Da Silva, M. F., de Souza Antônio, C., de Oliveira, P. J., Xavier, G. R., Rumjanek, N. G., de Barros Soares, L. H., & Reis, V. M. (2012). Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant and Soil, 356(1), 231-243. https://doi.org/10.1007/s11104-012-1242-3 De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101(6), 1.611-1.627. https://doi.org/10.1016/j.biortech.2009.09.043 Eiselt, P., Yeh, J., Latvala, R. K., Shea, L. D., & Mooney, D. J. (2000). Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 21(19), 1.921-1.927. https://doi.org/10.1016/S0142-9612(00)00033-8 Gagné-Bourque, F., Xu, M., Dumont, M.-J., & Jabaji, S. (2015). Pea protein alginate encapsulated Bacillus subtilis B26, a plant biostimulant, provides controlled release and increased storage survival. Journal of Fertilizers & Pesticides, 6(2). https://doi.org/10.4172/jbfbp.1000157 Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97(20), 8.859-8.873. https://doi.org/10.1007/s00253-013-5228-8 Kang, Y., Shen, M., Wang, H., & Zhao, Q. (2013). A possible mechanism of action of plant growth-promoting rhizobacteria (pgpr) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. The Journal of General and Applied Microbiology, 59(4), 267-277. https://doi.org/10.2323/jgam.59.267 Kumaresan, G., & Reetha, D. (2011). Survival of Azospirillum brasilense in liquid formulation amended with different chemical additives. Journal of Phytology, 3(10), 48-51. http://updatepublishing.com/journal/index.php/jp/article/download/2725/2704 Lobo, C. B., Juárez Tomás, M. S., Viruel, E., Ferrero, M. A., & Lucca, M. E. (2019). Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research, 219, 12-25. https://doi.org/10.1016/j.micres.2018.10.012 Murphy, J. F., Reddy, M. S., Ryu, C.-M., Kloepper, J. W., & Li, R. (2003). Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology, 93(10), 1.301-1.307. https://doi.org/10.1094/PHYTO.2003.93.10.1301 Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1.084-1.090. https://doi.org/10.1111/j.1462-2920.2006.01202.x Rekha, P. D., Lai, W.-A., Arun, A. B., & Young, C.-C. (2007). Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresource Technology, 98(2), 447-451. https://doi.org/10.1016/j.biortech.2006.01.009 Schoebitz, M., Osman, J., & Ciampi, L. (2013). Effect of immobilized Serratia sp. by spray-drying technology on plant growth and phosphate uptake. Chilean Journal of Agricultural & Animal Sciences, 29(2), 111-119. https://www.researchgate.net/publication/263235206_Effect_of_immobilized_Serratia_sp_By_spray-drying_technology_on_plant_growth_and_phosphate_uptake/link/53d2735c0cf228d363e94265/download Singleton, P., Keyser, H., & Sande, E. (2002). Development and evaluation of liquid inoculants. En D. Herridge (ed.), Inoculants and nitrogen fixation of legumes in Vietnam (pp. 52-66). aciar Proceedings. Stephens, J. H. G., & Rask, H. M. (2000). Inoculant production and formulation. Field Crops Research, 65(2-3), 249-258. https://doi.org/10.1016/S0378-4290(99)00090-8 Tarek, R., Dayal, T. R., Kaur, B. S., & Danielle, P. (2014). Development of efficient suspension formulation of starch industry wastewater grown Sinorhizobium meliloti for agricultural use. International Journal of Agriculture Innovations and Research, 3(4), 1.083-1.093. https://www.researchgate.net/publication/274961111_Development_of_Efficient_Suspension_Formulation_of_Starch_Industry_Wastewater_Grown_Sinorhizobium_Meliloti_for_Agricultural_Use/link/552d98760cf21acb0921786b/download Trejo, A., de-Bashan, L. E., Hartmann, A., Hernandez, J.-P., Rothballer, M., Schmid, M., & Bashan, Y. (2012). Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environmental and Experimental Botany, 75, 65-73. https://doi.org/10.1016/j.envexpbot.2011.08.007 Trivedi, P., Pandey, A., & Palni, L. M. S. (2005). Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World Journal of Microbiology and Biotechnology, 21(6), 941-945. https://doi.org/10.1007/s11274-004-6820-y Vassilev, N., Vassileva, M., Azcon, R., & Medina, A. (2001). Application of free and Ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil–plant system. Journal of Biotechnology, 91(2-3), 237-242. https://doi.org/10.1016/S0168-1656(01)00341-8 Wang, L., Khor, E., & Lim, L.-Y. (2001). Chitosan–alginate–CaCl2 system for membrane coat application. Journal of Pharmaceutical Sciences, 90(8), 1.134-1.142. https://doi.org/10.1002/jps.1067 Wu, Z., Guo, L., Zhao, Y., & Li, C. (2014). Effect of free and encapsulated Raoultella planticola Rs-2 on cotton growth promotion under salt stress. Journal of Plant Nutrition, 37(8), 1.187-1.201. https://doi.org/10.1080/01904167.2014.881865 Xie, Z. P., Staehelin, C., Vierheilig, H., Wiemken, A., Jabbouri, S., Broughton, W. J., Vogeli-Lange, R., & Boller, T. (1995). Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiology, 108(4), 1.519-1.525. https://doi.org/10.1104/pp.108.4.1519 oung, C.-C., Rekha, P. D., Lai, W.-A., & Arun, A. B. (2006). Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnology and Bioengineering, 95(1), 76-83. https://doi.org/10.1002/bit.20957 Zohar-Perez, C., Chernin, L., Chet, I., & Nussinovitch, A. (2003). Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against uvc radiation. Radiation Research, 160(2), 198-204. https://doi.org/10.1667/rr3027 Zohar-Perez, C., Ritte, E., Chernin, L., Chet, I., & Nussinovitch, A. (2002). Preservation of chitinolytic Pantoae agglomerans in a viable form by cellular dried alginate-based carriers. Biotechnology Progress, 18(6), 1.133-1.140. https://doi.org/10.1021/bp025532t 36976; Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf Corporación colombiana de investigación agropecuaria - AGROSAVIA Mosquera (Colombia)