Predicting the fundamental fluxes of an eddy-covariance station using machine learning methods

Monitoring tools are needed to maximise living systems' ability to mitigate emissions and adapt to changing environmental conditions. Therefore, it is important to be able to predict the fundamental fluxes in crops, in this case vineyards, such as sensible heat flux (H), latent heat flux (LE) and ca...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Rodríguez, David, Catret, Pablo, Iglesias, Domingo J., Martínez, Juan J., López, Ernesto, García, Antonio
Formato: article
Lenguaje:Inglés
Publicado: Elsevier 2024
Materias:
Acceso en línea:https://hdl.handle.net/20.500.11939/8965
https://www.sciencedirect.com/science/article/pii/S1574954124001808

Ejemplares similares: Predicting the fundamental fluxes of an eddy-covariance station using machine learning methods