Online fitted policy iteration based on extreme learning machines

Reinforcement learning (RL) is a learning paradigm that can be useful in a wide variety of real-world applications. However, its applicability to complex problems remains problematic due to different causes. Particularly important among these are the high quantity of data required by the agent to le...

Descripción completa

Detalles Bibliográficos
Autores principales: Escandell-Montero, Pablo, Lorente, Delia, Martínez-Martínez, José M., Soria-Olivas, Emilio, Vila-Francés, Joan, Martín-Guerrero, José D.
Formato: article
Lenguaje:Inglés
Publicado: Elsevier 2021
Materias:
Acceso en línea:http://hdl.handle.net/20.500.11939/6972
https://www.sciencedirect.com/science/article/abs/pii/S0950705116001209#!

Ejemplares similares: Online fitted policy iteration based on extreme learning machines