Machine learning in space and time for modelling soil organic carbon change

Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Heuvelink, Gerard B.M., Angelini, Marcos Esteban, Poggio, Laura, Bai, Zhanguo, Batjes, Niels H., van den Bosch, Rik, Bossio, Deborah, Estella, Sergio, Lehmann, Johannes, Olmedo, Guillermo Federico, Sanderman, Jonathan
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Wiley 2020
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/8054
https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998
https://doi.org/10.1111/ejss.12998

Ejemplares similares: Machine learning in space and time for modelling soil organic carbon change