Machine learning in space and time for modelling soil organic carbon change
Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a dat...
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | info:ar-repo/semantics/artículo |
| Language: | Inglés |
| Published: |
Wiley
2020
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.12123/8054 https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998 https://doi.org/10.1111/ejss.12998 |
Similar Items: Machine learning in space and time for modelling soil organic carbon change
- Including spatial correlation in structural equation modelling of soil properties
- Green spaces in a tertiary care children`s hospital benefits, taxonomic survey, and perspective
- Estudio de factibilidad técnica de un centro de servicio alimentario saludable en la Escuela Agrícola Panamericana, Zamorano
- Subsoleo en suelos arcillosos masivos y fertilización con magnesio en el cultivo
- Evaluacion del efecto del subsoleo del suelo en la producción de frijol Amadeus 77 y DEORHO en Zamorano, Honduras
- Evaluación de los sustratos: fibra de coco, compost: arena y compost: arena: suelo: casulla de arroz para producción de crisantemo (Dendrathema × grandiflorum kitamura) en macrotúnel