Machine learning in space and time for modelling soil organic carbon change
Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a dat...
| Autores principales: | , , , , , , , , , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
Wiley
2020
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/8054 https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998 https://doi.org/10.1111/ejss.12998 |
Ejemplares similares: Machine learning in space and time for modelling soil organic carbon change
- Establecimiento y validación de curvas de calibración NIRS para la composición química del queso cabaña
- Composición florística, estructura y biomasa de los bosques de pino-encino en la reserva Santa Rosa, Tisey, Estelí, Nicaragua
- Spatial prediction of soil organic carbon stocks in Ghana using legacy data
- Sensitivity of global soil carbon stocks to combined nutrient enrichment
- On the ability of the LR method to detect bias when there is pedigree misspecification and lack of connectedness
- Local regression algorithm improves NIRS predictions when the target constituent evolves in breeding populations