Machine learning in space and time for modelling soil organic carbon change

Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a dat...

Full description

Bibliographic Details
Main Authors: Heuvelink, Gerard B.M., Angelini, Marcos Esteban, Poggio, Laura, Bai, Zhanguo, Batjes, Niels H., van den Bosch, Rik, Bossio, Deborah, Estella, Sergio, Lehmann, Johannes, Olmedo, Guillermo Federico, Sanderman, Jonathan
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Wiley 2020
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/8054
https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998
https://doi.org/10.1111/ejss.12998

Similar Items: Machine learning in space and time for modelling soil organic carbon change