Machine learning in space and time for modelling soil organic carbon change

Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a dat...

Full description

Bibliographic Details
Main Authors: Heuvelink, Gerard B.M., Angelini, Marcos Esteban, Poggio, Laura, Bai, Zhanguo, Batjes, Niels H., van den Bosch, Rik, Bossio, Deborah, Estella, Sergio, Lehmann, Johannes, Olmedo, Guillermo Federico, Sanderman, Jonathan
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Wiley 2020
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/8054
https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998
https://doi.org/10.1111/ejss.12998
_version_ 1855035968269058048
author Heuvelink, Gerard B.M.
Angelini, Marcos Esteban
Poggio, Laura
Bai, Zhanguo
Batjes, Niels H.
van den Bosch, Rik
Bossio, Deborah
Estella, Sergio
Lehmann, Johannes
Olmedo, Guillermo Federico
Sanderman, Jonathan
author_browse Angelini, Marcos Esteban
Bai, Zhanguo
Batjes, Niels H.
Bossio, Deborah
Estella, Sergio
Heuvelink, Gerard B.M.
Lehmann, Johannes
Olmedo, Guillermo Federico
Poggio, Laura
Sanderman, Jonathan
van den Bosch, Rik
author_facet Heuvelink, Gerard B.M.
Angelini, Marcos Esteban
Poggio, Laura
Bai, Zhanguo
Batjes, Niels H.
van den Bosch, Rik
Bossio, Deborah
Estella, Sergio
Lehmann, Johannes
Olmedo, Guillermo Federico
Sanderman, Jonathan
author_sort Heuvelink, Gerard B.M.
collection INTA Digital
description Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a data-driven, statistical method for mapping SOC stocks in space and time, using Argentina as a pilot. We used quantile regression forest machine learning to predict annual SOC stock at 0–30 cm depth at 250 m resolution for Argentina between 1982 and 2017. The model was calibrated using over 5,000 SOC stock values from the 36-year time period and 35 environmental covariates. We preprocessed normalized difference vegetation index (NDVI) dynamic covariates using a temporal low-pass filter to allow the SOC stock for a given year to depend on the NDVI of the current as well as preceding years. Predictions had modest temporal variation, with an average decrease for the entire country from 2.55 to 2.48 kg C m−2 over the 36-year period (equivalent to a decline of 211 Gg C, 3.0% of the total 0–30 cm SOC stock in Argentina). The Pampa region had a larger estimated SOC stock decrease from 4.62 to 4.34 kg C m−2 (5.9%) during the same period. For the 2001–2015 period, predicted temporal variation was seven-fold larger than that obtained using the Tier 1 approach of the Intergovernmental Panel on Climate Change and United Nations Convention to Combat Desertification. Prediction uncertainties turned out to be substantial, mainly due to the limited number and poor spatial and static, whereas SOC is dynamic and SOC dynamics are of particular interest to carbon sequestration and land degradation studies. Thus, there is a clear need to extend spatial SOC mapping to space–time SOC mapping. temporal distribution of the calibration data, and the limited explanatory power of the covariates. Cross-validation confirmed that SOC stock prediction accuracy was limited, with a mean error of 0.03 kg C m−2 and a root mean squared error of 2.04 kg C m−2. In spite of the large uncertainties, this work showed that machine learning methods can be used for space–time SOC mapping and may yield valuable information to land managers and policymakers, provided that SOC observation density in space and time is sufficiently large.
format info:ar-repo/semantics/artículo
id INTA8054
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2020
publishDateRange 2020
publishDateSort 2020
publisher Wiley
publisherStr Wiley
record_format dspace
spelling INTA80542020-10-15T11:47:31Z Machine learning in space and time for modelling soil organic carbon change Heuvelink, Gerard B.M. Angelini, Marcos Esteban Poggio, Laura Bai, Zhanguo Batjes, Niels H. van den Bosch, Rik Bossio, Deborah Estella, Sergio Lehmann, Johannes Olmedo, Guillermo Federico Sanderman, Jonathan Argentina Estimación de las Existencias de Carbono Cambio Climático Degradación de Tierras Carbon Stock Assessments Climate Change Land Degradation Quantile Regression Rorest Space-time Mapping Bosque de Regresión de Cuantiles Mapeo Espacio-tiempo Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a data-driven, statistical method for mapping SOC stocks in space and time, using Argentina as a pilot. We used quantile regression forest machine learning to predict annual SOC stock at 0–30 cm depth at 250 m resolution for Argentina between 1982 and 2017. The model was calibrated using over 5,000 SOC stock values from the 36-year time period and 35 environmental covariates. We preprocessed normalized difference vegetation index (NDVI) dynamic covariates using a temporal low-pass filter to allow the SOC stock for a given year to depend on the NDVI of the current as well as preceding years. Predictions had modest temporal variation, with an average decrease for the entire country from 2.55 to 2.48 kg C m−2 over the 36-year period (equivalent to a decline of 211 Gg C, 3.0% of the total 0–30 cm SOC stock in Argentina). The Pampa region had a larger estimated SOC stock decrease from 4.62 to 4.34 kg C m−2 (5.9%) during the same period. For the 2001–2015 period, predicted temporal variation was seven-fold larger than that obtained using the Tier 1 approach of the Intergovernmental Panel on Climate Change and United Nations Convention to Combat Desertification. Prediction uncertainties turned out to be substantial, mainly due to the limited number and poor spatial and static, whereas SOC is dynamic and SOC dynamics are of particular interest to carbon sequestration and land degradation studies. Thus, there is a clear need to extend spatial SOC mapping to space–time SOC mapping. temporal distribution of the calibration data, and the limited explanatory power of the covariates. Cross-validation confirmed that SOC stock prediction accuracy was limited, with a mean error of 0.03 kg C m−2 and a root mean squared error of 2.04 kg C m−2. In spite of the large uncertainties, this work showed that machine learning methods can be used for space–time SOC mapping and may yield valuable information to land managers and policymakers, provided that SOC observation density in space and time is sufficiently large. Fil: Heuvelink, Gerard B.M. ISRIC - World soil information; Holanda. Wageningen University. Soil Geography and Landscape Group; Holanda Fil: Angelici, Marcos E. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina Fil: Poggio, Laura ISRIC - World soil information, Wageningen; Holanda Fil: Bai, Zhanguo ISRIC - World soil information, Wageningen, The Netherlands Fil: Batjes, Niels H. ISRIC - World soil information, Wageningen, The Netherlands Fil: an den Bosch, Rik ISRIC - World soil information, Wageningen, The Netherlands Fil: Bossio, Deborah The Nature Conservancy; Estados Unidos Fil: Estella, Sergio Vizzuality; España Fil: Lehmann, Jhoannes. Cornell University. Soil and Crop Sciences; Estados Unidos Fil: Olmedo, Guillermo F. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Sandermann, Jonathan. Woods Hole Research Center; Estados Unidos 2020-10-15T11:17:38Z 2020-10-15T11:17:38Z 2020-05-20 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/8054 https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998 1365-2389 https://doi.org/10.1111/ejss.12998 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Wiley European Journal of Soil Science : 1-17 (First published: 20 May 2020)
spellingShingle Argentina
Estimación de las Existencias de Carbono
Cambio Climático
Degradación de Tierras
Carbon Stock Assessments
Climate Change
Land Degradation
Quantile Regression Rorest
Space-time Mapping
Bosque de Regresión de Cuantiles
Mapeo Espacio-tiempo
Heuvelink, Gerard B.M.
Angelini, Marcos Esteban
Poggio, Laura
Bai, Zhanguo
Batjes, Niels H.
van den Bosch, Rik
Bossio, Deborah
Estella, Sergio
Lehmann, Johannes
Olmedo, Guillermo Federico
Sanderman, Jonathan
Machine learning in space and time for modelling soil organic carbon change
title Machine learning in space and time for modelling soil organic carbon change
title_full Machine learning in space and time for modelling soil organic carbon change
title_fullStr Machine learning in space and time for modelling soil organic carbon change
title_full_unstemmed Machine learning in space and time for modelling soil organic carbon change
title_short Machine learning in space and time for modelling soil organic carbon change
title_sort machine learning in space and time for modelling soil organic carbon change
topic Argentina
Estimación de las Existencias de Carbono
Cambio Climático
Degradación de Tierras
Carbon Stock Assessments
Climate Change
Land Degradation
Quantile Regression Rorest
Space-time Mapping
Bosque de Regresión de Cuantiles
Mapeo Espacio-tiempo
url http://hdl.handle.net/20.500.12123/8054
https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998
https://doi.org/10.1111/ejss.12998
work_keys_str_mv AT heuvelinkgerardbm machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT angelinimarcosesteban machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT poggiolaura machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT baizhanguo machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT batjesnielsh machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT vandenboschrik machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT bossiodeborah machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT estellasergio machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT lehmannjohannes machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT olmedoguillermofederico machinelearninginspaceandtimeformodellingsoilorganiccarbonchange
AT sandermanjonathan machinelearninginspaceandtimeformodellingsoilorganiccarbonchange