Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
Yield prediction is still a major challenge in pear production. Forecasting fruit growth after modeled curves allows predicting both potential yield and quality. This research aimed to fit multilevel no-linear mixed models (NLMM) based on logistic curves to describe pear growth in the Upper valley o...
| Autores principales: | , , , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
Ediciones INTA
2024
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/16648 https://doi.org/10.58149/14h1-sp68 |
Ejemplares similares: Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
- A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize
- Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
- Estimación de rendimientos en montes frutales de peras y manzanas incorporando el uso de análisis de imágenes
- Comparación de modelos no lineales para describir curvas de crecimiento del portainjerto limón rugoso (Citrus jambhiri Lush.) bajo condiciones de vivero = Comparison of non-linear models to describe growth curves of the rough lemon root (Citrus jambhiri Lush.) under nursery conditions
- Análisis de las variables que influyen en la calidad de la pera William's. Primera parte: Calibre
- Raleo manual en peral