Incorporation of environmental covariates to nonlinear mixed models describing fruit growth

Yield prediction is still a major challenge in pear production. Forecasting fruit growth after modeled curves allows predicting both potential yield and quality. This research aimed to fit multilevel no-linear mixed models (NLMM) based on logistic curves to describe pear growth in the Upper valley o...

Descripción completa

Detalles Bibliográficos
Autores principales: Del Brio, Dolores, Tassile, Valentin, Bramardi, Sergio Jorge, Reeb, Pablo Daniel
Formato: Artículo
Lenguaje:Inglés
Publicado: Ediciones INTA 2024
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/16648
https://doi.org/10.58149/14h1-sp68
_version_ 1855485815116791808
author Del Brio, Dolores
Tassile, Valentin
Bramardi, Sergio Jorge
Reeb, Pablo Daniel
author_browse Bramardi, Sergio Jorge
Del Brio, Dolores
Reeb, Pablo Daniel
Tassile, Valentin
author_facet Del Brio, Dolores
Tassile, Valentin
Bramardi, Sergio Jorge
Reeb, Pablo Daniel
author_sort Del Brio, Dolores
collection INTA Digital
description Yield prediction is still a major challenge in pear production. Forecasting fruit growth after modeled curves allows predicting both potential yield and quality. This research aimed to fit multilevel no-linear mixed models (NLMM) based on logistic curves to describe pear growth in the Upper valley of Rio Negro and Neuquén, Argentina. The models incorporated several thermo-accumulative indices accounting for temperature effects on fruit-growth physiology. In this way, they captured normal fruit-growth patterns and environmental variations along the growing season. The study was conducted on “William´s” pear trees for 16 seasons. Many trees and fruits were randomly selected and identified. Equatorial diameters were weekly measured with an electronic digital caliper. Climatic data was recorded for all studied seasons from INTA Upper Valley agrochemical station and thermo accumulative indexes were calculated from daily temperature. The best models were selected according to the information criteria index. Multilevel NLMM discerned and quantified the sources of stochastic variability at different levels, allowing better index criteria in comparison to models only considering a single level of variability among random effects. The incorporation of thermo accumulative indexes also increased model performance.
format Artículo
id INTA16648
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Ediciones INTA
publisherStr Ediciones INTA
record_format dspace
spelling INTA166482024-02-16T12:37:30Z Incorporation of environmental covariates to nonlinear mixed models describing fruit growth Del Brio, Dolores Tassile, Valentin Bramardi, Sergio Jorge Reeb, Pablo Daniel Pera Crecimiento Medio Ambiente Rendimiento Métodos Estadísticos Pears Growth Environment Yields Statistical Methods Yield prediction is still a major challenge in pear production. Forecasting fruit growth after modeled curves allows predicting both potential yield and quality. This research aimed to fit multilevel no-linear mixed models (NLMM) based on logistic curves to describe pear growth in the Upper valley of Rio Negro and Neuquén, Argentina. The models incorporated several thermo-accumulative indices accounting for temperature effects on fruit-growth physiology. In this way, they captured normal fruit-growth patterns and environmental variations along the growing season. The study was conducted on “William´s” pear trees for 16 seasons. Many trees and fruits were randomly selected and identified. Equatorial diameters were weekly measured with an electronic digital caliper. Climatic data was recorded for all studied seasons from INTA Upper Valley agrochemical station and thermo accumulative indexes were calculated from daily temperature. The best models were selected according to the information criteria index. Multilevel NLMM discerned and quantified the sources of stochastic variability at different levels, allowing better index criteria in comparison to models only considering a single level of variability among random effects. The incorporation of thermo accumulative indexes also increased model performance. El pronóstico de cosecha es un gran desafío en la producción de peras. Estimar el tamaño de los frutos a partir de curvas de crecimiento permite predecir tanto la cantidad como la calidad de la fruta para cosecha. Este trabajo tuvo como objetivo ajustar modelos mixtos no lineales multiniveles (MMNL) basados en la curva logística para describir el crecimiento de peras “William´s” en el Alto Valle de Río Negro y Neuquén, Argentina. Los modelos ajustados incorporaron diferentes índices termoacumulativos que contemplan los efectos de la temperatura en la fisiología del crecimiento de los frutos. De esta manera, se logra no solo describir el crecimiento de los frutos, sino también se pueden observar las variaciones ambientales a lo largo de las temporadas de crecimiento. El estudio se realizó en perales “William´s” durante 16 temporadas. Se seleccionaron e identificaron al azar numerosos árboles y frutos. A cada fruto se le midió su diámetro ecuatorial semanalmente con un calibre digital electrónico. Los datos climáticos se obtuvieron de la estación meteorológica del INTA Alto Valle y los índices termoacumulativos se calcularon a partir de los datos de temperaturas. Los mejores modelos fueron seleccionados según los criterios de información. El MMNL multinivel permitió discernir y cuantificar las fuentes de variabilidad estocástica en diferentes niveles, lo que permitió obtener mejores criterios de información en comparación con los modelos que solo consideraron un único nivel de variabilidad entre los efectos aleatorios. La incorporación de índices termoacumulativos mejoró notablemente la performance de los modelos obtenidos. EEA Alto Valle Fil: Del Brío, Dolores. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina Fil: Tassile, Valentín. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnología de los Alimentos; Argentina Fil: Bramardi, Sergio Jorge. Universidad Nacional del Comahue. Departamento de Estadística; Argentina Fil: Reeb, Pablo Daniel. Universidad Nacional del Comahue. Departamento de Estadística; Argentina 2024-02-16T12:35:21Z 2024-02-16T12:35:21Z 2023-12 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/16648 0325-8718 1669-2314 https://doi.org/10.58149/14h1-sp68 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Ediciones INTA RIA 49 (3) : 85-92. (diciembre 2023)
spellingShingle Pera
Crecimiento
Medio Ambiente
Rendimiento
Métodos Estadísticos
Pears
Growth
Environment
Yields
Statistical Methods
Del Brio, Dolores
Tassile, Valentin
Bramardi, Sergio Jorge
Reeb, Pablo Daniel
Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
title Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
title_full Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
title_fullStr Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
title_full_unstemmed Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
title_short Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
title_sort incorporation of environmental covariates to nonlinear mixed models describing fruit growth
topic Pera
Crecimiento
Medio Ambiente
Rendimiento
Métodos Estadísticos
Pears
Growth
Environment
Yields
Statistical Methods
url http://hdl.handle.net/20.500.12123/16648
https://doi.org/10.58149/14h1-sp68
work_keys_str_mv AT delbriodolores incorporationofenvironmentalcovariatestononlinearmixedmodelsdescribingfruitgrowth
AT tassilevalentin incorporationofenvironmentalcovariatestononlinearmixedmodelsdescribingfruitgrowth
AT bramardisergiojorge incorporationofenvironmentalcovariatestononlinearmixedmodelsdescribingfruitgrowth
AT reebpablodaniel incorporationofenvironmentalcovariatestononlinearmixedmodelsdescribingfruitgrowth