La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma

Poster

Bibliographic Details
Main Authors: Sanchez, Gerardo, Churichi, Alan X., Valentini, Gabriel Hugo, Aballay, Maximiliano Martín
Format: Conferencia
Language:Español
Published: REDBIO Argentina 2023
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/14752
_version_ 1855485422731264000
author Sanchez, Gerardo
Churichi, Alan X.
Valentini, Gabriel Hugo
Aballay, Maximiliano Martín
author_browse Aballay, Maximiliano Martín
Churichi, Alan X.
Sanchez, Gerardo
Valentini, Gabriel Hugo
author_facet Sanchez, Gerardo
Churichi, Alan X.
Valentini, Gabriel Hugo
Aballay, Maximiliano Martín
author_sort Sanchez, Gerardo
collection INTA Digital
description Poster
format Conferencia
id INTA14752
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Español
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher REDBIO Argentina
publisherStr REDBIO Argentina
record_format dspace
spelling INTA147522023-07-14T18:42:50Z La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma Sanchez, Gerardo Churichi, Alan X. Valentini, Gabriel Hugo Aballay, Maximiliano Martín Fitomejoramiento Inteligencia Artificial Frutales Prunus persica Durazno Fenotipado de Alto Rendimiento Bioinformática Biotecnología Plant Breeding Artificial Intelligence Fruit Crops Peaches High-throughput Phenotyping Bioinformatics Biotechnology Visión por Computadoras Computer Vision Poster Automatizar la toma de datos fenotípicos es crucial a la hora de aumentar la escala de un programa de mejora. En el caso de los frutales, esta necesidad es incluso más evidente si se tiene en cuenta que el mantenimiento de árboles a campo encarece el costo de fenotipado por las horas-hombre necesarias. Sin embargo, según nuestro conocimiento no existe un programa de mejora de frutales que haya implementado alguna aproximación fenómica. En la EEA San Pedro del INTA se lleva a cabo un programa de mejoramiento de duraznero que en los últimos 10 años fue modernizado mediante la implementación de tecnologías genómicas. En la actualidad estamos interesados en aumentar la eficiencia de este programa mediante la implementación del fenotipado de alto caudal. En el contexto de una colaboración entre la Startup Biotango, el INTA y la carrera en especialización en Inteligencia Artificial de la FIUBA se desarrolló un algoritmo que usa aprendizaje profundo combinado con visión por computadoras para cuantificar características del fruto a partir de fotos. Con esta herramienta se analizó un total de 1028 fotos de frutos de la colección que fueron tomadas durante 7 campañas entre los años 2013 y 2020, registrándose entre 86 (campaña 2017-2018) y 281 (campaña 2010-2011) variedades. Cada foto contiene 4 frutos de una variedad que muestran diferentes vistas: 1) vista superior, 2) vista inferior, 3) vista lateral y 4) fruto cortado en el plano ecuatorial donde se observa la pulpa con el carozo. El algoritmo desarrollado detecta para cada fruto: I) el alto y ancho (mm) que se utilizó para estimar la relación alto/ancho; II) el área observada (mm2) que permite estimar el tamaño de fruto y III) para el caso del fruto cortado (4), el porcentaje de pulpa/carozo (%) y tanto el color subjetivo (amarillo/blanco) como el color objetivo (CIELAB) de la pulpa. En cuanto al tamaño, se observó variabilidad tanto para la vista lateral (3) como para las vistas ecuatoriales (1, 2 y 4), con diferencias mayores a 4x (frutos más grandes/fruto más chico) entre variedades en ambos casos. La relación alto/largo de la vista lateral (3) mostró valores extremos de 1.30 para variedades con frutos alargados y 0.60 para variedades chatas. Para el caso de la forma ecuatorial (1, 2 y 4) también se observó variabilidad en la relación alto/ancho variando entre 1.17 para frutos con quilla marcada y 0.80 para frutos achatados. Se obtuvo porcentajes de pulpa entre 77.78%-98.86%, indicando que también existe variabilidad para este carácter. En cuanto a la asignación de color subjetivo, el algoritmo tuvo una precisión del 99.13%. La información obtenida se combinará con datos genómicos para entender el control genético de caracteres útiles para la mejora. A su vez esta herramienta fenómica abre la posibilidad de modelar características de relevancia económica en función del clima y sus genes, un paso fundamental para hacer frente al cambio climático. EEA San Pedro, INTA Fil: Sánchez, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Churichi, Alan Xavier. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Aballay, Maximiliano Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina 2023-07-14T18:26:16Z 2023-07-14T18:26:16Z 2023 info:ar-repo/semantics/documento de conferencia info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/14752 spa info:eu-repograntAgreement/INTA/2023-PE-L01-I105/2023-PE-L01-I105, Generación de conocimientos, tecnologías e innovaciones para una fruticultura sostenible adaptadas al riesgo ambiental y a la mecanización info:eu-repograntAgreement/INTA/2019-PE-E6-I125-001/2019-PE-E6-I125-001, Mejoramiento genético, caracterización y uso de variabilidad con aplicación de herramientas biotecnológicas en cultivos frutales info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf REDBIO Argentina XIV Simposio REDBIO Argentina. Biotecnología para un mundo en cambio. Ciudad Autónoma de Buenos Aires. 28 al 30 de junio 2023.
spellingShingle Fitomejoramiento
Inteligencia Artificial
Frutales
Prunus persica
Durazno
Fenotipado de Alto Rendimiento
Bioinformática
Biotecnología
Plant Breeding
Artificial Intelligence
Fruit Crops
Peaches
High-throughput Phenotyping
Bioinformatics
Biotechnology
Visión por Computadoras
Computer Vision
Sanchez, Gerardo
Churichi, Alan X.
Valentini, Gabriel Hugo
Aballay, Maximiliano Martín
La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma
title La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma
title_full La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma
title_fullStr La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma
title_full_unstemmed La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma
title_short La implementación de visión por computadora basada en Inteligencia Artificial reveló variabilidad en caracteres del durazno contenida en una colección de germoplasma
title_sort la implementacion de vision por computadora basada en inteligencia artificial revelo variabilidad en caracteres del durazno contenida en una coleccion de germoplasma
topic Fitomejoramiento
Inteligencia Artificial
Frutales
Prunus persica
Durazno
Fenotipado de Alto Rendimiento
Bioinformática
Biotecnología
Plant Breeding
Artificial Intelligence
Fruit Crops
Peaches
High-throughput Phenotyping
Bioinformatics
Biotechnology
Visión por Computadoras
Computer Vision
url http://hdl.handle.net/20.500.12123/14752
work_keys_str_mv AT sanchezgerardo laimplementaciondevisionporcomputadorabasadaeninteligenciaartificialrevelovariabilidadencaracteresdelduraznocontenidaenunacolecciondegermoplasma
AT churichialanx laimplementaciondevisionporcomputadorabasadaeninteligenciaartificialrevelovariabilidadencaracteresdelduraznocontenidaenunacolecciondegermoplasma
AT valentinigabrielhugo laimplementaciondevisionporcomputadorabasadaeninteligenciaartificialrevelovariabilidadencaracteresdelduraznocontenidaenunacolecciondegermoplasma
AT aballaymaximilianomartin laimplementaciondevisionporcomputadorabasadaeninteligenciaartificialrevelovariabilidadencaracteresdelduraznocontenidaenunacolecciondegermoplasma