Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola

Assessing the nutritional quality traits of pastures is crucial for germplasm and breeding evaluations, enabling the selection of high-quality forages to enhance livestock productivity. However, traditional laboratory analytical methods are logistically demanding and costly, particularly in large-sc...

Full description

Bibliographic Details
Main Authors: Camelo, Rodrigo Andres, Mazabel, Johanna, Espitia-Buitrago, Paula, Jauregui, Rosa Noemi, Cardoso, Juan Andres
Format: Data Paper
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:https://hdl.handle.net/10568/174967
_version_ 1855515058586517504
author Camelo, Rodrigo Andres
Mazabel, Johanna
Espitia-Buitrago, Paula
Jauregui, Rosa Noemi
Cardoso, Juan Andres
author_browse Camelo, Rodrigo Andres
Cardoso, Juan Andres
Espitia-Buitrago, Paula
Jauregui, Rosa Noemi
Mazabel, Johanna
author_facet Camelo, Rodrigo Andres
Mazabel, Johanna
Espitia-Buitrago, Paula
Jauregui, Rosa Noemi
Cardoso, Juan Andres
author_sort Camelo, Rodrigo Andres
collection Repository of Agricultural Research Outputs (CGSpace)
description Assessing the nutritional quality traits of pastures is crucial for germplasm and breeding evaluations, enabling the selection of high-quality forages to enhance livestock productivity. However, traditional laboratory analytical methods are logistically demanding and costly, particularly in large-scale trials, underscoring the need for rapid, precise, and high-throughput evaluation methods. Near-Infrared Spectroscopy (NIRS) optimizes the estimation of forage nutritional quality parameters by developing chemometric models that predict these parameters with high accuracy and precision, based on the association between NIRS data and wet chemistry analyses. This dataset, collected over ten years by the Tropical Forages Program at the International Center for Tropical Agriculture (CIAT) in Colombia, comprises 1112 samples. It includes 995 measurements of Neutral Detergent Fiber (NDF), 996 of Acid Detergent Fiber (ADF), 995 of In Vitro Dry Matter (IVDMD), and 469 of Crude Protein (CP), all obtained through wet chemistry methodologies. Additionally, the 1112 samples contain absorbance data spanning 400 to 2498 nanometers (nm) in 2 nm intervals, generating 1050 spectral data points per sample. Finally, this dataset is a valuable resource for predicting forage nutritional quality beyond conventional parameters, incorporating plant reflectance attributes to enhance selection strategies for optimized forage selection.
format Data Paper
id CGSpace174967
institution CGIAR Consortium
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling CGSpace1749672025-12-08T10:29:22Z Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola Camelo, Rodrigo Andres Mazabel, Johanna Espitia-Buitrago, Paula Jauregui, Rosa Noemi Cardoso, Juan Andres high-throughput phenotyping fenotipado de alto rendimiento forage yield nutritive value-nutritional assessment of feeds infrared spectrophotometry-near infrared spectroscopy valor nutritivo-evaluación nutricional piensos calidad del cultivo espectroscopia infrarroja-espectroscopia infrarrojo cercano Assessing the nutritional quality traits of pastures is crucial for germplasm and breeding evaluations, enabling the selection of high-quality forages to enhance livestock productivity. However, traditional laboratory analytical methods are logistically demanding and costly, particularly in large-scale trials, underscoring the need for rapid, precise, and high-throughput evaluation methods. Near-Infrared Spectroscopy (NIRS) optimizes the estimation of forage nutritional quality parameters by developing chemometric models that predict these parameters with high accuracy and precision, based on the association between NIRS data and wet chemistry analyses. This dataset, collected over ten years by the Tropical Forages Program at the International Center for Tropical Agriculture (CIAT) in Colombia, comprises 1112 samples. It includes 995 measurements of Neutral Detergent Fiber (NDF), 996 of Acid Detergent Fiber (ADF), 995 of In Vitro Dry Matter (IVDMD), and 469 of Crude Protein (CP), all obtained through wet chemistry methodologies. Additionally, the 1112 samples contain absorbance data spanning 400 to 2498 nanometers (nm) in 2 nm intervals, generating 1050 spectral data points per sample. Finally, this dataset is a valuable resource for predicting forage nutritional quality beyond conventional parameters, incorporating plant reflectance attributes to enhance selection strategies for optimized forage selection. 2025-05-13 2025-06-04T13:02:14Z 2025-06-04T13:02:14Z Data Paper https://hdl.handle.net/10568/174967 en Open Access application/pdf Elsevier Camelo, R.A.; Mazabel, J.; Espitia-Buitrago, P.; Jauregui, R.N.; Cardoso, J.A. (2025) Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola. Data in Brief 60: 111651. ISSN: 2352-3409
spellingShingle high-throughput phenotyping
fenotipado de alto rendimiento
forage yield
nutritive value-nutritional assessment of feeds
infrared spectrophotometry-near infrared spectroscopy
valor nutritivo-evaluación nutricional piensos
calidad del cultivo
espectroscopia infrarroja-espectroscopia infrarrojo cercano
Camelo, Rodrigo Andres
Mazabel, Johanna
Espitia-Buitrago, Paula
Jauregui, Rosa Noemi
Cardoso, Juan Andres
Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola
title Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola
title_full Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola
title_fullStr Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola
title_full_unstemmed Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola
title_short Near-infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in Urochloa humidicola
title_sort near infrared spectroscopy and wet chemistry dataset for forage nutritional quality assessment in urochloa humidicola
topic high-throughput phenotyping
fenotipado de alto rendimiento
forage yield
nutritive value-nutritional assessment of feeds
infrared spectrophotometry-near infrared spectroscopy
valor nutritivo-evaluación nutricional piensos
calidad del cultivo
espectroscopia infrarroja-espectroscopia infrarrojo cercano
url https://hdl.handle.net/10568/174967
work_keys_str_mv AT camelorodrigoandres nearinfraredspectroscopyandwetchemistrydatasetforforagenutritionalqualityassessmentinurochloahumidicola
AT mazabeljohanna nearinfraredspectroscopyandwetchemistrydatasetforforagenutritionalqualityassessmentinurochloahumidicola
AT espitiabuitragopaula nearinfraredspectroscopyandwetchemistrydatasetforforagenutritionalqualityassessmentinurochloahumidicola
AT jaureguirosanoemi nearinfraredspectroscopyandwetchemistrydatasetforforagenutritionalqualityassessmentinurochloahumidicola
AT cardosojuanandres nearinfraredspectroscopyandwetchemistrydatasetforforagenutritionalqualityassessmentinurochloahumidicola