Bayesian multitrait kernel methods improve multienvironment genome-based prediction

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian mu...

Full description

Bibliographic Details
Main Authors: Montesinos López, Osval A., Montesinos López, José Cricelio, Montesinos López, Abelardo, Ramírez Alcaraz, Juan Manuel, Poland, Jesse A., Singh, Ravi P., Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Mondal, Suchismita, Velu, Govindan, Juliana, Philomin, Huerta Espino, Julio, Shrestha, Sandesh, Varshney, Rajeev K., Crossa, José
Format: Journal Article
Language:Inglés
Published: Oxford University Press 2022
Subjects:
Online Access:https://hdl.handle.net/10568/126371

Similar Items: Bayesian multitrait kernel methods improve multienvironment genome-based prediction