Bayesian multitrait kernel methods improve multienvironment genome-based prediction

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Montesinos López, Osval A., Montesinos López, José Cricelio, Montesinos López, Abelardo, Ramírez Alcaraz, Juan Manuel, Poland, Jesse A., Singh, Ravi P., Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Mondal, Suchismita, Velu, Govindan, Juliana, Philomin, Huerta Espino, Julio, Shrestha, Sandesh, Varshney, Rajeev K., Crossa, José
Formato: Journal Article
Lenguaje:Inglés
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/126371
_version_ 1855535100198912000
author Montesinos López, Osval A.
Montesinos López, José Cricelio
Montesinos López, Abelardo
Ramírez Alcaraz, Juan Manuel
Poland, Jesse A.
Singh, Ravi P.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Mondal, Suchismita
Velu, Govindan
Juliana, Philomin
Huerta Espino, Julio
Shrestha, Sandesh
Varshney, Rajeev K.
Crossa, José
author_browse Crespo-Herrera, Leonardo A.
Crossa, José
Dreisigacker, Susanne
Huerta Espino, Julio
Juliana, Philomin
Mondal, Suchismita
Montesinos López, Abelardo
Montesinos López, José Cricelio
Montesinos López, Osval A.
Poland, Jesse A.
Ramírez Alcaraz, Juan Manuel
Shrestha, Sandesh
Singh, Ravi P.
Varshney, Rajeev K.
Velu, Govindan
author_facet Montesinos López, Osval A.
Montesinos López, José Cricelio
Montesinos López, Abelardo
Ramírez Alcaraz, Juan Manuel
Poland, Jesse A.
Singh, Ravi P.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Mondal, Suchismita
Velu, Govindan
Juliana, Philomin
Huerta Espino, Julio
Shrestha, Sandesh
Varshney, Rajeev K.
Crossa, José
author_sort Montesinos López, Osval A.
collection Repository of Agricultural Research Outputs (CGSpace)
description When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets. The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge regression and GBLUP multitrait models. The results show that, in general, the Gaussian kernel method outperformed conventional Bayesian Ridge and GBLUP multitrait linear models by 2.2–17.45% (datasets 1–3) in terms of prediction performance based on the mean square error of prediction. This improvement in terms of prediction performance of the Bayesian multitrait kernel method can be attributed to the fact that the proposed model is able to capture nonlinear patterns more efficiently than linear multitrait models. However, not all kernels perform well in the datasets used for evaluation, which is why more than one kernel should be evaluated to be able to choose the best kernel.
format Journal Article
id CGSpace126371
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher Oxford University Press
publisherStr Oxford University Press
record_format dspace
spelling CGSpace1263712025-11-12T05:34:40Z Bayesian multitrait kernel methods improve multienvironment genome-based prediction Montesinos López, Osval A. Montesinos López, José Cricelio Montesinos López, Abelardo Ramírez Alcaraz, Juan Manuel Poland, Jesse A. Singh, Ravi P. Dreisigacker, Susanne Crespo-Herrera, Leonardo A. Mondal, Suchismita Velu, Govindan Juliana, Philomin Huerta Espino, Julio Shrestha, Sandesh Varshney, Rajeev K. Crossa, José plant breeding genomics forecasting bayesian theory When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets. The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge regression and GBLUP multitrait models. The results show that, in general, the Gaussian kernel method outperformed conventional Bayesian Ridge and GBLUP multitrait linear models by 2.2–17.45% (datasets 1–3) in terms of prediction performance based on the mean square error of prediction. This improvement in terms of prediction performance of the Bayesian multitrait kernel method can be attributed to the fact that the proposed model is able to capture nonlinear patterns more efficiently than linear multitrait models. However, not all kernels perform well in the datasets used for evaluation, which is why more than one kernel should be evaluated to be able to choose the best kernel. 2022-02-04 2022-12-28T14:59:21Z 2022-12-28T14:59:21Z Journal Article https://hdl.handle.net/10568/126371 en Open Access application/pdf Oxford University Press Montesinos-López, O. A., Montesinos-López, J. C., Montesinos-López, A., Ramírez-Alcaraz, J. M., Poland, J., Singh, R., Dreisigacker, S., Crespo, L., Mondal, S., Govidan, V., Juliana, P., Espino, J. H., Shrestha, S., Varshney, R. K., & Crossa, J. (2021). Bayesian multitrait kernel methods improve multienvironment genome-based prediction. G3 Genes|Genomes|Genetics, 12(2). https://doi.org/10.1093/g3journal/jkab406
spellingShingle plant breeding
genomics
forecasting
bayesian theory
Montesinos López, Osval A.
Montesinos López, José Cricelio
Montesinos López, Abelardo
Ramírez Alcaraz, Juan Manuel
Poland, Jesse A.
Singh, Ravi P.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Mondal, Suchismita
Velu, Govindan
Juliana, Philomin
Huerta Espino, Julio
Shrestha, Sandesh
Varshney, Rajeev K.
Crossa, José
Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_full Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_fullStr Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_full_unstemmed Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_short Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_sort bayesian multitrait kernel methods improve multienvironment genome based prediction
topic plant breeding
genomics
forecasting
bayesian theory
url https://hdl.handle.net/10568/126371
work_keys_str_mv AT montesinoslopezosvala bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT montesinoslopezjosecricelio bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT montesinoslopezabelardo bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT ramirezalcarazjuanmanuel bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT polandjessea bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT singhravip bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT dreisigackersusanne bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT crespoherreraleonardoa bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT mondalsuchismita bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT velugovindan bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT julianaphilomin bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT huertaespinojulio bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT shresthasandesh bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT varshneyrajeevk bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT crossajose bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction