Bayesian multitrait kernel methods improve multienvironment genome-based prediction

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Montesinos López, Osval A., Montesinos López, José Cricelio, Montesinos López, Abelardo, Ramírez Alcaraz, Juan Manuel, Poland, Jesse A., Singh, Ravi P., Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Mondal, Suchismita, Velu, Govindan, Juliana, Philomin, Huerta Espino, Julio, Shrestha, Sandesh, Varshney, Rajeev K., Crossa, José
Formato: Journal Article
Lenguaje:Inglés
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/126371

Ejemplares similares: Bayesian multitrait kernel methods improve multienvironment genome-based prediction