Bayesian multitrait kernel methods improve multienvironment genome-based prediction
When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian mu...
| Autores principales: | , , , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Oxford University Press
2022
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/126371 |
Ejemplares similares: Bayesian multitrait kernel methods improve multienvironment genome-based prediction
- Balancing sensitivity and specificity enhances top and bottom ranking in genomic prediction of cultivars
- A Bayesian optimization R package for multitrait parental selection
- Bayesian divergence-based approach for genomic multitrait ordinal selection
- A graph model for genomic prediction in the context of a linear mixed model framework
- An approach for improving the sampling efficiency in the Bayesian calibration of computationally expensive simulation models
- Optimizing genomic parental selection for categorical and continuous-categorical multi-trait mixtures