Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia
Essential oils are natural compounds with great potential to be used as products with high antioxidant activity. The aim of this research was to determine the chemical composition and antioxidant activity of the Nufar variety basil essential oil from three municipalities in Tolima, Colombia. The...
| Autores principales: | , , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2025
|
| Materias: | |
| Acceso en línea: | https://www-sciencedirect-com.recursos.agrosavia.co/science/article/pii/S2772753X24002144 http://hdl.handle.net/20.500.12324/41188 https://doi.org/10.1016/j.focha.2024.100819 |
| _version_ | 1854959795970244608 |
|---|---|
| author | López Hernández, Martha Criollo Nunez, Jenifer Beltran, Jose Isidro Sandoval Aldana, Angélica |
| author_browse | Beltran, Jose Isidro Criollo Nunez, Jenifer López Hernández, Martha Sandoval Aldana, Angélica |
| author_facet | López Hernández, Martha Criollo Nunez, Jenifer Beltran, Jose Isidro Sandoval Aldana, Angélica |
| author_sort | López Hernández, Martha |
| collection | Repositorio AGROSAVIA |
| description | Essential oils are natural compounds with great potential to be used as products with high antioxidant activity.
The aim of this research was to determine the chemical composition and antioxidant activity of the Nufar variety
basil essential oil from three municipalities in Tolima, Colombia. The essential oil extracted from the leaves of
this basil variety using microwave-assisted extraction predominantly comprises linalool (37.9–41.1%), estragole
(24.5–33.6%), and 1,8-cineole (5.2–7.6%). The quantities of these compounds are influenced by the plant’s place
of origin. Regarding antioxidant activity, the basil essential oil cultivated in the municipality of Honda shows
higher antioxidant activity in the DPPH and ABTS⋅+ tests (29.89 ± 4.03 and 9.60 ± 1.74 mg/mL, respectively),
compared to the values from the municipalities of Mariquita and Espinal. The Principal Component Analysis
applied to the data generated biplots that explain 99.8% of the total variation. These indicate that the essential
oils from basil grown in the municipality of Espinal are characterized by having a high IC50 (mg/mL) in the
DPPH test. On the other hand, the essential oils of basil cultivated in the municipalities of Honda and Mariquita
are distinguished by their high content of monoterpenes and total terpenes. The study concludes that the
geographical location significantly impacts the chemical composition and antioxidant activity of basil plants. |
| format | article |
| id | RepoAGROSAVIA41188 |
| institution | Corporación Colombiana de Investigación Agropecuaria |
| language | Inglés |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | RepoAGROSAVIA411882025-09-06T03:02:07Z Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia López Hernández, Martha Criollo Nunez, Jenifer Beltran, Jose Isidro Sandoval Aldana, Angélica Producción y tratamiento de semillas - F03 Albahaca Composición bioquimica Planta aromática Antioxidante Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_9093 http://aims.fao.org/aos/agrovoc/c_325cb76a http://aims.fao.org/aos/agrovoc/c_2668 http://aims.fao.org/aos/agrovoc/c_511 Essential oils are natural compounds with great potential to be used as products with high antioxidant activity. The aim of this research was to determine the chemical composition and antioxidant activity of the Nufar variety basil essential oil from three municipalities in Tolima, Colombia. The essential oil extracted from the leaves of this basil variety using microwave-assisted extraction predominantly comprises linalool (37.9–41.1%), estragole (24.5–33.6%), and 1,8-cineole (5.2–7.6%). The quantities of these compounds are influenced by the plant’s place of origin. Regarding antioxidant activity, the basil essential oil cultivated in the municipality of Honda shows higher antioxidant activity in the DPPH and ABTS⋅+ tests (29.89 ± 4.03 and 9.60 ± 1.74 mg/mL, respectively), compared to the values from the municipalities of Mariquita and Espinal. The Principal Component Analysis applied to the data generated biplots that explain 99.8% of the total variation. These indicate that the essential oils from basil grown in the municipality of Espinal are characterized by having a high IC50 (mg/mL) in the DPPH test. On the other hand, the essential oils of basil cultivated in the municipalities of Honda and Mariquita are distinguished by their high content of monoterpenes and total terpenes. The study concludes that the geographical location significantly impacts the chemical composition and antioxidant activity of basil plants. 2025-09-05T14:16:10Z 2025-09-05T14:16:10Z 2024-09 2024 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www-sciencedirect-com.recursos.agrosavia.co/science/article/pii/S2772753X24002144 2772-753X http://hdl.handle.net/20.500.12324/41188 https://doi.org/10.1016/j.focha.2024.100819 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Food Chemistry Advances 5 1 Adams, R. P. (2017). Identification of essential oil components by gas chromatography/mass spectrometry. Gruver, TX USA: Texensis Publishing, 5 online ed http://www.juniper us.org/uploads/2/2/6/3/22639912/bk4frontisbnpreface-contents5thedonline2017. pdf. Aebisher, D., Cichonski, J., Szpyrka, E., Masjonis, S., & Chrzanowski, G. (2021). Essential oils of seven lamiaceae plants and their antioxidant capacity. Molecules, 26(13). https://doi.org/10.3390/molecules26133793. Article 13. Agronet. (2022). Reporte:area, ´ produccion ´ y rendimiento nacional por cultivo. https://www. agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Ahmed, A.F., Attia, F.A.K., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299–305. https://doi. org/10.1016/j.fshw.2019.07.004. Akçura, S. (2023). Biplot analysis of monthly variations in essential oil concentration and chemical composition of Pittosporum tobira leaves in Mediterranean conditions. Biochemical Systematics and Ecology, 110, Article 104712. https://doi.org/10.1016/j. bse.2023.104712 Analdex. (2023, febrero 24). Las exportaciones de Colombia se impulsan con las hierbas aromaticas. ´ Analdex - Asociacion ´ Nacional de Comercio Exterior. https://analdex.or g/2023/02/24/las-exportaciones-de-colombia-se-impulsan-con-las-hierbas-aromat icas/. Beltrame, J. M., Angnes, R. A., Chiavelli, L. U. R., Costa, W. F.da, Montanher, S. F., Rosa, M. F.da, Lobo, V.da S., & Pomini, A. M (2014). Chemical Composition of the Essential Oil Obtained from Ocimum basilicum (Basil) Cultivated in Two Regions from South Brazil. Journal of Essential Oil Bearing Plants, 17(4), 658–663. https://doi. org/10.1080/0972060X.2014.895212 Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5. Damalas, C. A. (2019). Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Scientia Horticulturae, 246, 360–365. https://doi.org/10.1016/j. scienta.2018.11.005 de Almeida, I., Alviano, D. S., Vieira, D. P., Alves, P. B., Blank, A. F., Lopes, A. H. C., Alviano, C. S., & Rosa, M.do S. S (2007). Antigiardial activity of Ocimum basilicum essential oil. Parasitology Research, 101, 443–452. Dudai, N., Nitzan, N., & Gonda, I. (2020). Ocimum basilicum L. (Basil). In En J. Novak, & W.-D. Blüthner (Eds.), Medicinal, aromatic and stimulant plants (pp. 377–405). Springer International Publishing. https://doi.org/10.1007/978-3-030-38792-1_10. Duque, J. E., Urbina, D. L., Vesga, L. C., Ortiz-Rodríguez, L. A., Vanegas, T. S., Stashenko, E. E., & Mendez-Sanchez, S. C. (2023). Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): An introduction to their possible mechanism of action. Scientific Reports, 13(1). https:// doi.org/10.1038/s41598-023-30046-8. Article 1. Farsaraei, S., Moghaddam, M., & Pirbalouti, A. G. (2020). Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Scientia Horticulturae, 271, Article 109465. https://doi. org/10.1016/j.scienta.2020.109465 Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043–1048. https://doi.org/ 10.1016/j.jfca.2011.01.008 Gaio, I., Saggiorato, A. G., Treichel, H., Cichoski, A. J., Astolfi, V., Cardoso, R. I., Toniazzo, G., Valduga, E., Paroul, N., & Cansian, R. L. (2015). Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 10(4), 323–329. https://doi.org/ 10.1007/s00003-015-0936-x Gil, M. I., Tomas-Barber ´ ´ an, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48(10), 4581–4589. https://doi.org/10.1021/jf000404a Ili´c, A. S., Anti´c, M. P., Jelaˇci´c, S. C., & Knudsen, T. M.S. ˇ (2019). Chemical composition of the essential oils of three ocimum basilicum L. cultivars from Serbia. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2). https://doi.org/10.15835/ nbha47111250. Article 2. Ili´c, Z. S., Milenkovi´c, L., Tmuˇsi´c, N., Stanojevi´c, L., Stanojevi´c, J., & Cvetkovi´c, D. (2022). Essential oils content, composition and antioxidant activity of lemon balm, mint and sweet basil from Serbia. Lwt, 153, Article 112210. Kanmaz, H., Gokce, Y., & Hayaloglu, A. A. (2023). Volatiles, phenolic compounds and bioactive properties of essential oil and aqueous extract of purple basil (Ocimum basilicum L.) and antidiabetic activity in streptozotocin-induced diabetic Wistar rats. Food Chemistry Advances, 3, Article 100429. https://doi.org/10.1016/j. focha.2023.100429 Milenkovi´c, L., Stanojevi´c, J., Cvetkovi´c, D., Stanojevi´c, L., Lalevi´c, D., Suni ˇ ´c, L., Fallik, E., & Ili´c, Z. S. (2019). New technology in basil production with high essential oil yield and quality. Industrial Crops and Products, 140, Article 111718. https://doi. org/10.1016/j.indcrop.2019.111718 Mur´ arikov´ a, A., Taˇ ˇzký, A., Neugebauerov´ a, J., Plankov´ a, A., Jampílek, J., Muˇcaji, P., & Mikuˇs, P. (2017). Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC–MS Method. Molecules, 22(7). https://doi.org/ 10.3390/molecules22071221. Article 7. NIST, N. (2014). EPA/NIH mass spectral library. Gaithersburg: National Institute of Standards and Technology. Prinsi, B., Morgutti, S., Negrini, N., Faoro, F., & Espen, L. (2020). Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants, 9(1), Article 1. https://doi.org/10.3390/plants9010022. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/10.1016/ S0891-5849(98)00315-3 Rodrigues, L. B., Martins, A. O. B. P. B., Cesario, ´ F. R. A. S., e Castro, F. F., de Albuquerque, T. R., Fernandes, M. N. M., da Silva, B. A. F., Júnior, L. J. Q., da Costa, J. G. M., & Coutinho, H. D. M. (2016). Anti-inflammatory and antiedematogenic activity of the Ocimum basilicum essential oil and its main compound estragole: In vivo mouse models. Chemico-biological interactions, 257, 14–25. Saggiorato, A. G., Gaio, I., Treichel, H., de Oliveira, D., Cichoski, A. J., & Cansian, R. L. (2012). Antifungal activity of basil essential oil (Ocimum basilicum L.): evaluation in vitro and on an italian-type sausage surface. Food and Bioprocess Technology, 5(1), 378–384. https://doi.org/10.1007/s11947-009-0310-z Shehata, A.M., & Nosir, W.S.E. (2019). Response of sweet basil plants (Ocimum basilicum, L.) grown under salinity stress to spraying seaweed extract. Future Journal of Biology, 2(1), 16–28. Talebi, M., Moghaddam, M., & Pirbalouti, A. G. (2018). Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiologiae Plantarum, 40(2), 34. https://doi.org/ 10.1007/s11738-018-2611-1 Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 9(3), 297–304. https://doi.org/ 10.1016/j.pbi.2006.03.014 Wiley, J. (2006). Wiley registry of mass spectral data. NJ: John Wiley Hoboken. https:// www.academia.edu/download/62636162/Wiley-Registry-Of-Mass-Spectral-Data by-John-Wiley–Sons-Ltd20200331-6448-v2q0d7.pdf. Zheljazkov, V. D., Callahan, A., & Cantrell, C. L. (2008). Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. Journal of Agricultural and Food Chemistry, 56(1), 241–245. https://doi.org/10.1021/jf072447y Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Tolima Honda Mariquita Espinal C.I Nataima Colombia Elsevier Elsevier Ltd Food Chemistry Advances; Vol. 5, (2024): Food Chemistry Advances (Septiembre). |
| spellingShingle | Producción y tratamiento de semillas - F03 Albahaca Composición bioquimica Planta aromática Antioxidante Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_9093 http://aims.fao.org/aos/agrovoc/c_325cb76a http://aims.fao.org/aos/agrovoc/c_2668 http://aims.fao.org/aos/agrovoc/c_511 López Hernández, Martha Criollo Nunez, Jenifer Beltran, Jose Isidro Sandoval Aldana, Angélica Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia |
| title | Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia |
| title_full | Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia |
| title_fullStr | Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia |
| title_full_unstemmed | Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia |
| title_short | Chemical composition and antioxidant activity of ‘Nufar’ basil (Ocimum basilicum L.) essential oil from three municipalities of Tolima, Colombia |
| title_sort | chemical composition and antioxidant activity of nufar basil ocimum basilicum l essential oil from three municipalities of tolima colombia |
| topic | Producción y tratamiento de semillas - F03 Albahaca Composición bioquimica Planta aromática Antioxidante Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_9093 http://aims.fao.org/aos/agrovoc/c_325cb76a http://aims.fao.org/aos/agrovoc/c_2668 http://aims.fao.org/aos/agrovoc/c_511 |
| url | https://www-sciencedirect-com.recursos.agrosavia.co/science/article/pii/S2772753X24002144 http://hdl.handle.net/20.500.12324/41188 https://doi.org/10.1016/j.focha.2024.100819 |
| work_keys_str_mv | AT lopezhernandezmartha chemicalcompositionandantioxidantactivityofnufarbasilocimumbasilicumlessentialoilfromthreemunicipalitiesoftolimacolombia AT criollonunezjenifer chemicalcompositionandantioxidantactivityofnufarbasilocimumbasilicumlessentialoilfromthreemunicipalitiesoftolimacolombia AT beltranjoseisidro chemicalcompositionandantioxidantactivityofnufarbasilocimumbasilicumlessentialoilfromthreemunicipalitiesoftolimacolombia AT sandovalaldanaangelica chemicalcompositionandantioxidantactivityofnufarbasilocimumbasilicumlessentialoilfromthreemunicipalitiesoftolimacolombia |