Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments
Agricultural sustainability assessments have gained high importance during the last decades. Different tools have been developed for these assessments such as the Sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES). SMAES quantifies the current sustaina...
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
John Wiley and Sons Ltd
2025
|
Materias: | |
Acceso en línea: | https://www.authorea.com/users/776949/articles/1219455-estimating-the-future-with-the-sustainability-assessment-methodology-to-soil-associated-agricultural-experiments http://hdl.handle.net/20.500.12324/41155 |
id |
RepoAGROSAVIA41155 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Cultivo - F01 Solanum tuberosum Cultivo Sostenibilidad Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_1972 http://aims.fao.org/aos/agrovoc/c_33560 |
spellingShingle |
Cultivo - F01 Solanum tuberosum Cultivo Sostenibilidad Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_1972 http://aims.fao.org/aos/agrovoc/c_33560 Hoogenboom, Gerrit Rodríguez-Roa, Andrea Onelia Castillo Romero, Oscar Gonzalo Monsalve Camacho, Oscar Iván Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments |
description |
Agricultural sustainability assessments have gained high importance during the last decades. Different tools have been developed for these assessments such as the Sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES). SMAES quantifies the current sustainability of the different treatments evaluated in experiments associated with the soil. However, efforts aimed to maintain or increase the crop systems sustainability must be planned and measured in the short, medium, and long-term. In this work, some parameters are added to SMAES to estimate the future sustainability. The first parameter is the construction of climate scenarios (RCP 4.5 and 8.5, model CCSM4, periods 2050-2100) to establish the conditions of change in the future. Second, crop yield is modelled with DSSAT (Decision Support System for Agrotechnology Transfer) using the aforementioned climate scenarios. Third, yield modelling results and SMAES sustainability indexes (IS) from climate scenarios are integrated. As a case of study, the current sustainability (IS-A) of five potato fertilization split treatments were initially estimated: Commercial control (Control), Fertilization recommended by Agrosavia (As), Monthly split fertilization recommended by Agrosavia (AsSplit), AsSplit decreasing the amount of fertilizer by 25% (AsSp25), and AsSplit decreasing the amount of fertilizer by 50% (AsSp50). AsSp50 generated the highest current and future sustainability with IS-A = 0.90, IS-45, and IS-85 = 0.88. Results suggest that integrated fertilization management practices generate a higher potato crop sustainability in the Colombian high Andean, both today and the future. |
format |
article |
author |
Hoogenboom, Gerrit Rodríguez-Roa, Andrea Onelia Castillo Romero, Oscar Gonzalo Monsalve Camacho, Oscar Iván |
author_facet |
Hoogenboom, Gerrit Rodríguez-Roa, Andrea Onelia Castillo Romero, Oscar Gonzalo Monsalve Camacho, Oscar Iván |
author_sort |
Hoogenboom, Gerrit |
title |
Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments |
title_short |
Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments |
title_full |
Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments |
title_fullStr |
Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments |
title_full_unstemmed |
Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments |
title_sort |
estimating the future with the sustainability assessment methodology to soil-associated agricultural experiments |
publisher |
John Wiley and Sons Ltd |
publishDate |
2025 |
url |
https://www.authorea.com/users/776949/articles/1219455-estimating-the-future-with-the-sustainability-assessment-methodology-to-soil-associated-agricultural-experiments http://hdl.handle.net/20.500.12324/41155 |
work_keys_str_mv |
AT hoogenboomgerrit estimatingthefuturewiththesustainabilityassessmentmethodologytosoilassociatedagriculturalexperiments AT rodriguezroaandreaonelia estimatingthefuturewiththesustainabilityassessmentmethodologytosoilassociatedagriculturalexperiments AT castilloromerooscargonzalo estimatingthefuturewiththesustainabilityassessmentmethodologytosoilassociatedagriculturalexperiments AT monsalvecamachooscarivan estimatingthefuturewiththesustainabilityassessmentmethodologytosoilassociatedagriculturalexperiments |
_version_ |
1842255488485425152 |
spelling |
RepoAGROSAVIA411552025-08-30T03:00:19Z Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments Estimating the future with the Sustainability assessment methodology to soil-associated agricultural experiments Hoogenboom, Gerrit Rodríguez-Roa, Andrea Onelia Castillo Romero, Oscar Gonzalo Monsalve Camacho, Oscar Iván Cultivo - F01 Solanum tuberosum Cultivo Sostenibilidad Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_1972 http://aims.fao.org/aos/agrovoc/c_33560 Agricultural sustainability assessments have gained high importance during the last decades. Different tools have been developed for these assessments such as the Sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES). SMAES quantifies the current sustainability of the different treatments evaluated in experiments associated with the soil. However, efforts aimed to maintain or increase the crop systems sustainability must be planned and measured in the short, medium, and long-term. In this work, some parameters are added to SMAES to estimate the future sustainability. The first parameter is the construction of climate scenarios (RCP 4.5 and 8.5, model CCSM4, periods 2050-2100) to establish the conditions of change in the future. Second, crop yield is modelled with DSSAT (Decision Support System for Agrotechnology Transfer) using the aforementioned climate scenarios. Third, yield modelling results and SMAES sustainability indexes (IS) from climate scenarios are integrated. As a case of study, the current sustainability (IS-A) of five potato fertilization split treatments were initially estimated: Commercial control (Control), Fertilization recommended by Agrosavia (As), Monthly split fertilization recommended by Agrosavia (AsSplit), AsSplit decreasing the amount of fertilizer by 25% (AsSp25), and AsSplit decreasing the amount of fertilizer by 50% (AsSp50). AsSp50 generated the highest current and future sustainability with IS-A = 0.90, IS-45, and IS-85 = 0.88. Results suggest that integrated fertilization management practices generate a higher potato crop sustainability in the Colombian high Andean, both today and the future. Corporación Colombiana de Investigación Agropecuaria - (AGROSAVIA) Ministerio de Agricultura y Desarrollo Rural - MADR Ceiba foundation Papa-Solanum tuberosum 2025-08-29T17:36:56Z 2025-08-29T17:36:56Z 2025 2025 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.authorea.com/users/776949/articles/1219455-estimating-the-future-with-the-sustainability-assessment-methodology-to-soil-associated-agricultural-experiments 1085-3278 http://hdl.handle.net/20.500.12324/41155 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Land Degradation and Development 36 4 1 42 Adavi, Z., Moradi, R., Saeidnejad, A. H., Tadayon, M. R., & Mansouri, H. 2018. Assessment of potato response to climate change and adaptation strategies. Science Horticulture, 228, 91–102. https://doi.org/10.1016/j.scienta.2017.10.017 Adhikari, P., Araya, H., Aruna, G., Balamatti, A., Banerjee, S., Baskaran, P., Barah, B. C., Behera, D., Berhe, T., Boruah, P., Dhar, S., Edwards, S., Fulford, M., Gujja, B., Ibrahim, H., Kabir, H., Kassam, A., Khadka, R. B., Koma, Y.S., Natarajan, U. S., Perez, R., Sen, D., Sharif, A., Singh, G., Styger, E., Thakur, A. K., Tiwari, A., Uphoff, N., & Verma, A. 2018. System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: experience with diverse crops in varying agroecologies. International Journal of Agricultural Sustainability, 16, 1–28. https://doi.org/10.1080/14735903.2017.1402504 Altieri, M.A. 2018. Agroecology. The science of sustainable agriculture, 2nd ed. Taylor & Francis Group, United Kingdom. Añez, B., Espinoza, W. 2006. Respuesta de la papa a la aplicación fraccionada de nitrógeno y potasio. Agricultura Andina, 11, 28–38. Barrera, L. 1998. Fertilización del cultivo de la papa en los departamentos de Cundinamarca y Boyacá. in: Guerrero, R (Ed), Fertilización de cultivos en clima frío. Monómeros Colombo Venezolanos S.A. Battilani, A., Plauborg, F. L., Hansen, S., Dolezal, F., Mazurczyk, W., & Bizik, J. 2008. Nitrogen uptake and nitrogen use efficiency of fertigated potatoes. Acta Horticulturae, 792, 61–67. https://doi.org/http://dx.doi.org/10.17660/ActaHortic.2008.792.4 10 Baush, J.C., Bojórquez, L. T., & Eakin, H. 2014. Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainability Science, 1–17. https://doi.org/10.1007/s11625-014-0243-y Bernard, E., & Larkin, R. P., Tavantzis, S., Erich, M.S., Alyokhin, A., Sewell, G., Lannan, A., Gross, S.D. 2012. Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Applied Soil Ecology, 52, 29–41. https://doi.org/10.1016/j.apsoil.2011.10.002 Burton, D. L., Zebarth, B. J., Gillam, K. M., & Macleod, J. A. 2008. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Canadian Journal of Soil Science. 99, 117–125. https://doi.org/10.1139/cjss-2018-0150 Cámara de Comercio de Bogotá (CCB). Steps to create company. 2023. Available at: https://www.ccb.org.co/. Access on: June 25, 2023. Campbell, B. M., Thornton, P., Zougmoré, R., van Asten, P., & Lipper, L. 2014. Sustainable intensification: What is its role in climate smart agriculture? Current Opinion of Environmental Sustainability, 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002 Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., & Cayuela, M. L. 2018. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutrient Cycle Agroecosystems, 111, 103–125. https://doi.org/10.1007/s10705-017-9903-5 Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., & Richels, R. 2007. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological & Environmental Research, Washington, 7 DC., USA, 154 pp. Daccache, A., Keay, C., Jones, R. J. A., Waterhead, E.K., Stalhman, M. A., & Knox, J. W. 2012. Climate change and land suitability for potato production in England and Wales: impacts and adaptation. Journal of Agricultural Science, 150, 161–177. https://doi.org/10.1017/S0021859611000839 De Luca, A. I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., & Vittuari, M. 2015. Multidisciplinary and Innovative Methodologies for Sustainable Management in Agricultural Systems: the Mimesmas Project. Environmental Engieneering Management Journal, 14, 1571–1581. De Olde, E., Moller, H., Marchand, F., McDowell, R. W., MacLeod, C. J., Sautier, M., Halloy, S., Barber, A., Benge, J., Bockstaller, C., Bokkers, E. A. M., De Boer, I. J. M., Legun, K. A., Le Quellec, I., Merfield, C., Oudshoorn, F. W., Reid, J., Shader, C., Szymanski, E., Sorensen, C. A. G., Whitehead, J., & Manhire, J. 2016. When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environmental Development and Sustainability, 1–16. https://doi.org/10.1007/s10668-016-9803-x Dirección de Impuestos y Aduanas Nacionales (DIAN). Estatuto tributario. 2023. Available at: www.dian.gov.co. Access on: June 25, 2023. Dzotsi, K. A., Jones, J. W., Adiku, S. G. K., Naab, J. B., Singh, U., Porter, C. H., & Gijsman, A. J. 2010. Modeling soil and plant phosphorus within DSSAT. Ecological Modelling, 221, 2839–2849. https://doi.org/10.1016/j.ecolmodel.2010.08.023 Ecoinvent Centre. 2017. Ecoinvent Data V. 2.0. Version 3.4. Swiss centre for life cycle inventories. Available from: http://www.ecoinvent.org. Evans, D. L., Janes-Bassett, V., Borrelli, P., Chenu, C., Ferreira, C. S.S., Griffiths, R. I., Kalantari, Z., Keesstra, S., Lal,R., Panagos, P., Robinson, D. A., Seifollahi-Aghmiuni, S., Smith, P., Steenhuis, T. S., Thomas,A., & Visser, S. M. 2022. Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 73(1), e13145. https://doi.org/10.1111/ejss.1314516 Federación colombiana de productores de papa (Fedepapa)., Ministerio de Ambiente, Vivienda y Desarrollo Territorial (Minambiente). 2004. Guía ambiental para el cultivo de la papa. Federación Colombiana de Productores de Papa Fleisher, D. H., Barnaby, J., Sicher, R., Resop, J. P., Timlin, D. J., & Reddy, V. R. 2013. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agricultural and Forest Meteorology, 171–172, 270–280. https://doi.org/10.1016/j.agrformet.2012.12.011 Fleisher, D. H., Timlin, D.J., & Reddy, V. R. 2008. Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agronomy Journal, 100, 711–719. https://doi.org/10.2134/agronj2007.0188 Food and Agriculture Organization of the United Nations (FAO). 2017. AquaCrop training handbooks. Book I. Anderstanding AquaCrop. FAO. P: 59. Forero, H. D., & Garzón, M. E. 2000. Validación del modelo de simulación del crecimiento “Substor-potato V. 35” para cuatro variedades mejoradas de papa (Solanum tuberosum ssp. andígena) bajo condiciones de cultivo comercial. Tesis de pregrado. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. Bogotá., Colombia. https://repository.agrosavia.co/handle/20.500.12324/16894 Godwin, D. C., & Singh, U. 1998. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems, in: Tsuji, G. Y., Hoogenboom, G., Thornton, P. K (Eds), Understanding options for agricultural production. Kluwer Academic Publ., Dordrecht, the Netherlands. p. 55–78. https://doi.org/10.1007/978-94-017-3624-4_4 Guerrero, R. 1998. Fertilización de cultivos de clima frío. Segunda edición. Monómeros Colombo-Venezolanos, Bogotá. 370 p. Heijungs R., & Guinée J. B. 2012. An overview of the life cycle assessment method – past, present, and future. In: Curran M. A (ed), Life Cycle Assessment Handbook. A Guide for Environmentally Sustainable Products. USA: Willey, pp. 15–42. https://doi.org/10.1002/9781118528372.ch2 Hoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P. W., Singh, U., White, J. W., Asseng, S., Lizaso, J. I., Moreno, L. P., Pavan, W., Ogoshi, R., Hunt, L. A., Tsuji, G. Y., & Jones, J. W. 2019. The DSSAT crop modeling ecosystem. In: Boote, K. J (ed), Advances in Crop Modeling for a Sustainable Agriculture. Burleigh Dodds Science Publishing, Cambridge, United Kingdom. p.173-216. http://dx.doi.org/10.19103/AS.2019.0061.10 Instituto Interamericano de Cooperación para la Agricultura (IICA). 2015. Modelos de simulación y herramientas de modelaje: elementos conceptuales y sistematización de herramientas para apoyar el análisis de impactos de la variabilidad y el cambio climático sobre las actividades agrícolas. IICA. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. 2003. The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7 Jones, J. W., Jianqiang, H., Boote, K. J., Wilkens, P., Porter, C. H., & Hu, Z. 2011. Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques. In: Ahuja, L. R., Liwang, M. (Eds.), Methods of Introducing SystemModels into Agricultural Research. American Society of Agronomy, CropScience Society of America, Soil Science Society of America Madison, WI, USA. Kanter, D. R., Musumba, M., Wood, S. L. R., Palm, C., Antle, J., Balvanera, P., Dale, V. H., Havlik, P., Kline, K. L., Scholes, R. J., Thornton, P., Tittonell, P., & Andelman, S. 2016. Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems, 163, 73-88. https://doi.org/10.1016/j.agsy.2016.09.010 Karibskii A. V., Shishorin Y. R. & Yurchenko S. S. 2003a. Financial and economic analysis and efficiency evaluation of investment projects and programs. I. Automation and Remote Control, 64, 886–904. https://doi.org/10.1023/a:1024129430374 Karibskii A.V., Shishorin Y. R. & Yurchenko S. S. 2003b. Financial and economic analysis and efficiency evaluation of investment projects and programs. II. Automation and Remote Control, 64, 1205–1224. https://doi.org/10.1023/a:1025003529815 Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., Chapman, S., McCown, R. L., Freebairn, D. M., & Smith, C. J. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9 Keesstra, S. D., Chenu,C., Munkholm, L. J., Cornu, S., Kuikman, P. J.,Thorsøe, M. H., Besse-Lototskaya, A., & Visser,S. M. 2024. European agricultural soil management: Towards climate-smart and sustainability, knowledge needs and research approaches. European Journal of Soil Science,75(1), e13437. https://doi.org/10.1111/ejss.1343724 Kleinwechter, U., Gastelo, M., Ritchie, J., Nelson, G., & Asseng, S. 2016. Simulating cultivar variations in potato yields for contrasting environments. Agricultural Systems, 145, 51–63. https://doi.org/10.1016/j.agsy.2016.02.011 Kuisma, P. 2002. Efficiency of split nitrogen fertilization with adjusted irrigation on potato. Agricultural and food science in Finland, 11, 59–74. https://doi.org/10.23986/afsci.5713 Kumar, S. N., Govindakrishnan, P. M., Swarooparani, D. N., Nitin, C., Surabhi, J., & Aggarwal, P. K. 2015. Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. International Journal of Plant Production, 9, 151–170. https://dx.doi.org/10.5958/2231-3915.2015.00011.5 Lizana, X. C., Avila, A., Tolaba, A., & Pablo, J. 2017. Agricultural and Forest Meteorology Field responses of potato to increased temperature during tuber bulking: Projection for climate change scenarios, at high-yield environments of Southern Chile. Agricultural and Forest Meteorology, 239, 192–201. https://doi.org/10.1016/j.agrformet.2017.03.012 Löbmann, M. T., Maring, L., Prokop, G., Brils, J., Bender, J., Bispo, A., & Helming, K. 2022. Systems knowledge for sustainable soil and land management. Science of The Total Environment, 822, 153389. https://doi.org/10.1016/j.scitotenv.2022.153389 Lutz, A. F., ter Maat, H. W., Biemans, H., Shrestha, A. B., Wester, P., & Immerzeel, W. W. 2016. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. International Journal of Climatology, 36, 3988–4005. https://doi.org/10.1002/joc.4608 Monsalve, C. O. I., Castillo-Romero, O. G., Bojacá, A. C. R., & Henao, T. M. C. 2023 Sustainability assessment methodology oriented to soil-associated agricultural experiments. Experimental Agriculture, 59, e18. https://doi.org/10.1017/S0014479723000145 Monsalve, C. O. I., Espitia, E. M., & Bolaños-Benavides, M. M. 2020a. Split fertilization as a strategy reducing the amount of fertilizer applied to potato crops in Colombia. Case of study. Revista Colombiana de Ciencias Hortícolas, 14(2), 240-248. https://doi.org/10.17584/rcch.2020v14i2.10523 Monsalve, C. O.I., Gutiérrez- Díaz, J.S., Bojacá-Aldana, C. R., Henao-Toro, M. C., & Espitia-Malagón, E. M. 2021. Soil Quality Indicators with Potential Use at Plot or Experimental Unit Scale. Eurasian Soil Science, 54 (Suppl 1), S62–S75. https://doi.org/10.1134/S1064229321140027 Monsalve, C. O. I. & Henao, T. M. C. 2022. Selection of the minimum indicator set for agricultural sustainability assessments at the plot scale. Agronomía Colombiana, 40(1), 98-108. https://doi.org/10.15446/agron.colomb.v40n1.98797 Monsalve, C. O. I., Luque, S. N. Y., & Henao, T. M.C. 2020b. Approach to an indicator to estimate the magnitude of physical effort in crop labors. Acta Agronómica, 69(4), 247-255. https://doi.org/10.15446/acag.v69n4.86501 Ning, L., Xu, X., Qiu, S., Lei, Q., Zhang, Y., Luo, J., Ding, W., Zhao, S., He, P., Zhou, W. 2023. Balancing potato yield, soil nutrient supply, and nitrous oxide emissions: An analysis of nitrogen application trade-offs. Science of The Total Environment, 899, 165628. https://doi.org/10.1016/j.scitotenv.2023.165628 Ordoñez, D. N., & Bolivar, G. A. 2014. Levantamiento agrológico del Centro Agropecuario (CAM), 1st ed. Instituto Geográfico Agustin Codazzi (IGAC), Bogotá, Colombia. Parton, W., Schimel, D., Ojima, D., & Cole, C. 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. Pages 147-167 in R.B. Bryant and R.W. Arnold, editors. Quantitative modeling of soil forming processes. SSSA Spec. Publ. 39. Pérez, L.C., Rodríguez, L. E., & Gómez, M. I. 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agronomia Colombiana, 26, 477–486. Porras, R. P. D., & Herrera, H. C. A. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia, 1st ed. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia. Raymundo, R., Asseng, S., Cammarano, D., & Quiroz, R. 2014. Field Crops Research Potato, sweet potato and yam models for climate change: A review. Field Crops Research, 166, 173–185. https://doi.org/10.1016/j.fcr.2014.06.017 Raymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J.E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., & Porter, C. 2017. Field Crops Research Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research, 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012 Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., & Wolf, J. 2018. Climate change impact on global potato production. European Journal of Agronomy, 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008 Riahi, K., Gruebler, A., & Nakicenovic, N. 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74, 7, 887-935. Rojas, B.E.O. 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interanual y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Geociencias. http://www.bdigital.unal.edu.co/5242/ Ruser, R., Flessa, H., Schilling, R., Steindl, H., & Beese, F. 1998. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Science Society of America Journal, 62, 1587–1595. https://doi.org/10.2136/sssaj1998.03615995006200060016x Sharpley, A. N., & Williams, J. R. 1990. EPIC — erosion/productivity impact calculator: 1. Model documentation. U. S. Dep. Agric. Tech. Bull. 1768, 235. https://www.cabidigitallibrary.org/doi/full/10.5555/19911950112 Smith, P., Smith, J.U., Powlson, D. S., Mcgill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L. S., Kelly, R. H., Klein-gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E. J., Mueller, T., Parton, W. J., Thornley, J. H. M., & Whitmore, A. P. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153–225. https://doi.org/10.1016/S0016-7061(97)00087-6 Sparks, A. H., Forbes, G. A., Hijmans, R. J., & Garrett, K. A. 2014. Climate change may have limited effect on global risk of potato late blight. Global Change Biology, 20, 3621–3631. https://doi.org/10.1111/gcb.12587 Stackhouse, P. W., & Kusterer, J. M. 2019. NASA -POWER Data Access Viewer. NASA Langley ASDC User Serv. 1. https://power.larc.nasa.gov/ Swart, R. J., Raskin, P., & Robinson, J. 2004. The problem of the future: Sustainability science and scenario analysis. Global Environmental Change, 14, 137–146. https://doi.org/10.1016/j.gloenvcha.2003.10.002 Tadesse, K. A., Lu, Z., Shen, Z., Daba, N. A., Li, J., Alam, M. A., Lisheng, L., Gilbert, N., Legesse, T. G., Huimin, Z. 2024. Impacts of long-term chemical nitrogen fertilization on soil quality, crop yield, and greenhouse gas emissions: With insights into post-lime application responses. Science of The Total Environment, 944, 173827. https://doi.org/10.1016/j.scitotenv.2024.173827 WCED (World Comission on Environment and Develpment). 1987. Our common future. Oxford University Press Wise, M. A., Calvin, K. V., Thomson, A. M., Clarke, L. E., Bond-Lamberty, B., Sands, R. D., Smith, S. J., Janetos, A. C., & Edmonds, J. A. 2009. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science, 324, 1183-1186 Yang, J. M., Yang, J. Y., Dou, S., Yang, X. M., & Hoogenboom, G. 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutrient Cycling in Agroecosystems, 95, 287–303. https://doi.org/10.1007/s10705-013-9563-z Zhang, X., Xu, M., Sun, N., Xiong, W., Huang, S., & Wu, L. 2016. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma, 265, 176–186. https://doi.org/10.1016/j.geoderma.2015.11.027 Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf John Wiley and Sons Ltd Land Degradation and Development; Vol. 36, (2025): Land Degradation and Development ;p. 1 - 42. |