Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades

The reuse of wastewater expands its area of influence due in part to the water crisis and the increase in population in urban areas. Technologically, the methods of the treatment and separation of toxic agents have been diversified to provide water with a second use. The objective of this work was t...

Full description

Bibliographic Details
Main Authors: Santillan Angeles, Abel, Mendoza Perez, Candido, Villagrán, Edwin, Garcia, Francisco, Flores Velazquez, Jorge
Format: article
Language:Inglés
Published: MDPI 2025
Subjects:
Online Access:https://www.mdpi.com/2073-4441/17/5/746
http://hdl.handle.net/20.500.12324/41049
https://doi.org/10.3390/w17050746
id RepoAGROSAVIA41049
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Biología del suelo - P34
Agua residual
Bibliometría
Hidrología del suelo
Transversal
http://aims.fao.org/aos/agrovoc/c_8308
http://aims.fao.org/aos/agrovoc/c_62e403a1
http://aims.fao.org/aos/agrovoc/c_79e2033c
spellingShingle Biología del suelo - P34
Agua residual
Bibliometría
Hidrología del suelo
Transversal
http://aims.fao.org/aos/agrovoc/c_8308
http://aims.fao.org/aos/agrovoc/c_62e403a1
http://aims.fao.org/aos/agrovoc/c_79e2033c
Santillan Angeles, Abel
Mendoza Perez, Candido
Villagrán, Edwin
Garcia, Francisco
Flores Velazquez, Jorge
Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades
description The reuse of wastewater expands its area of influence due in part to the water crisis and the increase in population in urban areas. Technologically, the methods of the treatment and separation of toxic agents have been diversified to provide water with a second use. The objective of this work was to evaluate the growth and development of science in the hydrothermal wastewater treatment (HTAR) through a bibliometric analysis. The keywords directly obtained from the treatment method were used in order to carry out the integration of related published research, and the terms used in the search both separately and crossly were “treatment, hydrothermal, wastewater” in the database from SCOPUS; 97 response records were filtered to 87 documents that were analyzed using BIBLIMETRIX as the R Statistical interface. According to the results obtained, the trend of documents published is shown, with 17 articles in 2023 and 21 in 2024. The author with the highest number of contributions on the topic is Yuanhui Zhang. The countries most involved in this issue are China, the U.S.A., and Japan; China was the one with the highest number of publications. The scientific and technological development regarding the HTAR is shown; and that, technology is aimed at the use and generation of energy. In addition, hydrothermal liquefaction treatment is being investigated to generate biocrude and bio-oils; the hydrothermal carbonization treatment for the generation of hydrochar; and the hydrothermal gasification treatment to produce methane and hydrogen; all from biomass with a high moisture content.
format article
author Santillan Angeles, Abel
Mendoza Perez, Candido
Villagrán, Edwin
Garcia, Francisco
Flores Velazquez, Jorge
author_facet Santillan Angeles, Abel
Mendoza Perez, Candido
Villagrán, Edwin
Garcia, Francisco
Flores Velazquez, Jorge
author_sort Santillan Angeles, Abel
title Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades
title_short Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades
title_full Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades
title_fullStr Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades
title_full_unstemmed Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades
title_sort bibliometric analysis of hydrothermal wastewater treatment in the last two decades
publisher MDPI
publishDate 2025
url https://www.mdpi.com/2073-4441/17/5/746
http://hdl.handle.net/20.500.12324/41049
https://doi.org/10.3390/w17050746
work_keys_str_mv AT santillanangelesabel bibliometricanalysisofhydrothermalwastewatertreatmentinthelasttwodecades
AT mendozaperezcandido bibliometricanalysisofhydrothermalwastewatertreatmentinthelasttwodecades
AT villagranedwin bibliometricanalysisofhydrothermalwastewatertreatmentinthelasttwodecades
AT garciafrancisco bibliometricanalysisofhydrothermalwastewatertreatmentinthelasttwodecades
AT floresvelazquezjorge bibliometricanalysisofhydrothermalwastewatertreatmentinthelasttwodecades
_version_ 1842255695393587200
spelling RepoAGROSAVIA410492025-07-10T03:00:50Z Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades Santillan Angeles, Abel Mendoza Perez, Candido Villagrán, Edwin Garcia, Francisco Flores Velazquez, Jorge Biología del suelo - P34 Agua residual Bibliometría Hidrología del suelo Transversal http://aims.fao.org/aos/agrovoc/c_8308 http://aims.fao.org/aos/agrovoc/c_62e403a1 http://aims.fao.org/aos/agrovoc/c_79e2033c The reuse of wastewater expands its area of influence due in part to the water crisis and the increase in population in urban areas. Technologically, the methods of the treatment and separation of toxic agents have been diversified to provide water with a second use. The objective of this work was to evaluate the growth and development of science in the hydrothermal wastewater treatment (HTAR) through a bibliometric analysis. The keywords directly obtained from the treatment method were used in order to carry out the integration of related published research, and the terms used in the search both separately and crossly were “treatment, hydrothermal, wastewater” in the database from SCOPUS; 97 response records were filtered to 87 documents that were analyzed using BIBLIMETRIX as the R Statistical interface. According to the results obtained, the trend of documents published is shown, with 17 articles in 2023 and 21 in 2024. The author with the highest number of contributions on the topic is Yuanhui Zhang. The countries most involved in this issue are China, the U.S.A., and Japan; China was the one with the highest number of publications. The scientific and technological development regarding the HTAR is shown; and that, technology is aimed at the use and generation of energy. In addition, hydrothermal liquefaction treatment is being investigated to generate biocrude and bio-oils; the hydrothermal carbonization treatment for the generation of hydrochar; and the hydrothermal gasification treatment to produce methane and hydrogen; all from biomass with a high moisture content. 2025-07-09T16:38:21Z 2025-07-09T16:38:21Z 2025-02 2025 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2073-4441/17/5/746 http://hdl.handle.net/20.500.12324/41049 https://doi.org/10.3390/w17050746 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Water 17 5 1 18 Sancho, R. Indicadores bibliométricos utilizados en la evaluación de la ciencia y la Tecnología. Revisión Bibliográfica. Rev. Esp. Doc. Cient. 1990, 13, 842–865. Available online: http://hdl.handle.net/10261/23694 (accessed on 15 January 2025). [CrossRef] Duque, P.; Cervantes, C.L.S. Responsabilidad Social Universitaria: Una revisión sistemática y análisis bibliométrico. Estud. Gerenciales 2019, 35, 451–464. [CrossRef] Moravcsik, M.J. ¿Cómo evaluar la Ciencia y a los científicos? Rev. Esp. Doc. Cient. 1989, 12, 313–323. López-Robles, J.R.; Guallar, J.; Otegi-Olaso, J.R.; Gamboa-Rosales, N.K. El Profesional de La Información (EPI): Bibliometric and thematic analysis (2006–2017). Prof. Inf. 2019, 28, 4. Available online: https://recyt.fecyt.es/index.php/EPI/article/view/epi.20 19.jul.17 (accessed on 15 January 2025). [CrossRef] Liu, H.; Basar, I.A.; Lyczko, N.; Nzihou, A.; Eskicioglu, C. Incorporation of hydrothermal liquefaction into wastewater treatment— Part I: Processes for energy recovery and evaluation of product distribution. Chem. Eng. J. 2022, 449, 137838. [CrossRef] Chiaramonti, D.; Kruse, A.; Klemm, M. (Eds.) Hydrotermal Technology in Biomass Utilization & Convesion; MDPI: Basel, Switzeland, 2020; p. 155. Available online: https://www.google.com.mx/books/edition/Hydrothermal_Technology_in_Biomass_Utili/ QXvgDwAAQBAJ?hl=es&gbpv=1&dq=hydrothermal+treatment&printsec=frontcover (accessed on 15 January 2025). Kochermann, J.; Görsch, K.; Wirth, B.; Mühlenberg, J.; Klemm, M. Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. J. Environ. Chem. Eng. 2018, 6, 5481–5487. [CrossRef] Guo, Y.; Yeh, T.; Song,W.; Xu, D.;Wang, S. A review of bio-oil production from hydrothermal liquefaction of algae. Renew. Sustain. Energy Rev. 2015, 48, 776–790. [CrossRef] Savage, P.E. Algae under pressure and in hot water. Science 2012, 338, 1039–1040. [CrossRef] Chand, R.; Kohansal, K.; Toor, S.; Pedersen, T.H.; Vollertsen, J. Microplastics degradation through hydrothermal liquefaction of wastewater treatment sludge. J. Clean. Prod. 2022, 335, 130383. [CrossRef] Zijlstra, D.S.; Cobussen-Pool, E.; Slort, D.J.; Visser, M.; Nanou, P.; Pels, J.R.;Wray, H.E. Development of a continuous hidrothermal treatment process for efficient dewatering of industrial wastewater sludge. Processes 2022, 10, 2702. [CrossRef] Aragón-Briceño, C.I.; Grasham, O.; Ross, A.B.; Dupont, V.; Camargo-Valero, M.A. Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew. Energy 2020, 157, 959–973. [CrossRef] Cengiz, N.Ü.; Sa˘glam, M.; Yüksel, M.; Ballice, L. Treatment of high-strength opium alkaloid wastewater using hydrothermal MARK gasification. J. Supercrit. Fluids 2017, 130, 301–331. [CrossRef] Onwudili, J.A.; Radhakrishnan, P.; Williams, P.T. Application of hydrothermal oxidation and alkaline hydrothermal gasification for the treatment of sewage sludge and pharmaceutical wastewaters. Environ. Technol. 2013, 34, 529–537. [CrossRef] [PubMed] Chen,W.-T.; Zhang, Y.; Zhang, J.; Yu, G.; Schideman, L.C.; Zhang, P.; Minarick, M. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresour. Technol. 2014, 152, 130–139. [CrossRef] Zhang, M.; Ma, W.; Cui, J.; Wu, S.; Han, J.; Zou, Y.; Huang, C. Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment. J. Hazard. Mater. 2020, 383, 121152. [CrossRef] Zhang, H.; Xue, G.; Chen, H.; Li, X. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere 2018, 191, 64–71. [CrossRef] Abdelraheem,W.H.M.; Patil, M.K.; Nadagouda, M.N.; Dionysiou, D.D. Hydrothermal synthesis of photoactive nitrogen- and boron-codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl. Catal. B Environ. 2019, 241, 598–611. [CrossRef] Wang,W.; Jiao, T.; Zhang, Q.; Luo, X.; Hu, J.; Chen, Y.; Peng, Q.; Yan, X.; Li, B. Hydrothermal synthesis of hierarchical core–shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment. R. Soc. Chem. Adv. 2015, 5, 56279–56285. [CrossRef] Ikram, M.; Raza, A.; Imran, M.; Ul-Hamid, A.; Shahbaz, A.; Ali, S. Hydrothermal synthesis of silver decorated reduced graphene oxide (rgo) nanoflakes with effective photocatalytic activity for wastewater treatment. Nonoscale Res. Lett. 2020, 15, 95. [CrossRef] Deng, F.; Zhong, F.; Lin, D.; Zhao, L.; Liu, Y.; Huang, J.; Luo, X.; Luo, S.; Dionysiou, D.D. One-step hydrothermal fabrication of visible-light-responsive AgInS2/SnIn4S8 heterojunction for highly-efficient photocatalytic treatment of organic pollutants and real pharmaceutical industry wastewater. Appl. Catal. B Environ. 2017, 219, 163–172. [CrossRef] Xu, Y.; Ren, B.; Wang, R.; Zhang, L.; Jiao, T.; Liu, Z. Facile preparation of rod-like MnO nanomixtures via hydrothermal approach and highly efficient removal of methylene blue for wastewater treatment. Nanomaterials 2019, 9, 10. [CrossRef] [PubMed] Deng, F.; Zhong, F.; Zhao, L.; Luo, X.; Luo, S.; Dionysiou, D.D. One-step in situ hydrothermal fabrication of octahedral CdS/SnIn4S8 nano-heterojunction for highly efficient photocatalytic treatment of nitrophenol and real pharmaceutical wastewater. J. Hazard. Mater. 2017, 340, 85–95. [CrossRef] [PubMed] Chen, G.; Yu, Y.; Li, W.; Yan, B.; Zhaoa, K.; Dong, X.; Cheng, Z.; Lin, F.; Li, L.; Zhao, H.; et al. Effects of reaction conditions on products and elements distribution via hydrothermal liquefaction of duckweed for wastewater treatment. Bioresour. Technol. 2020, 317, 124033. [CrossRef] [PubMed] Couto, E.; Calijuri, M.L.; Assemany, P. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration. Sci. Total Environ. 2020, 724, 138104. [CrossRef] Torri, C.; Kiwan, A.; Cavallo, M.; Pascalicchio, P.; Fabbri, D.; Vassura, I.; Rombolà, A.G.; Chiaberge, S.; Carbone, R.; Paglino, R.; et al. Biological Treatment of Hydrothermal Liquefaction (HTL) wastewater: Analytical evaluation of continuous process streams. J. Water Process Eng. 2021, 40, 101798. [CrossRef] Al-juboori, J.M.; Lewis, D.M.; Hall, T.; van Eyk, P.J. Characterization of the chemical properties of the produced organic fractions via hydrothermal liquefaction of biosolids from a wastewater treatment plant. Biomass Bioenergy 2023, 170, 106703. [CrossRef] Goswami, G.; Makut, B.B.; Das, D. Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment. Sci. Rep. 2019, 9, 15016. [CrossRef] Jaiswal, K.K.; Kumar, V.; Gururani, P.; Vlaskin, M.S.; Parveen, A.; Nanda, M.; Kurbatova, A.; Gautam, P.; Grigorenko, A.V. Bio-flocculation of oleaginous microalgae integrated with municipal wastewater treatment and its hydrothermal liquefaction for biofuel production. Environ. Technol. Innov. 2022, 26, 102348. [CrossRef] Quispe-Arpasi, D.; Bueno, B.E.; Espíndola, E.L.G.; Ribeiro, R.; Tommaso, G. Post-treatment of anaerobically digested hydrothermal liquefaction wastewater using UV photodegradation. Water Air Soil Pollut. 2021, 232, 347. [CrossRef] Wagner, J.L.; Le, C.D.; Ting, V.P.; Chuck, C.J. Design and operation of an inexpensive, laboratory-scale, continuous hydrothermal liquefaction reactor for the conversion of microalgae produced during wastewater treatment. Fuel Process. Technol. 2017, 165, 102–111. [CrossRef] Liu, H.; Lyczko, N.; Nzihou, A.; Eskicioglu, C. Incorporating hydrothermal licuefaction into wastewater treatment—Part II: Characterization, environmental impact and potential applications of hydrochar. J. Clean. Prod. 2023, 383, 135398. [CrossRef] Parsa, M.; Nourani, M.; Baghdadi, M.; Hosseinzadeh, M.; Pejman, M. Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction process: Characterization and application in wastewater treatment. J. Water Process Eng. 2019, 32, 100942. [CrossRef] Saner, A.; Carvalho, P.N.; Catalano, J.; Anastasakis, K. Renewable adsorbents from the solid residue of sewage sludge hydrothermal liquefaction for wastewater treatment. Sci. Total Environ. 2022, 838, 156418. [CrossRef] Jesse, S.D.; Davidson, P.D. Treatment of Post-Hydrothermal Liquefaction Wastewater (PHWW) for Heavy Metals, Nutrients, and Indicator Pathogens. Water 2019, 11, 854. [CrossRef] Quispe-Arpasi, D.; de Souza, R.; Stablein, M.; Liu, Z.; Duan, N.; Lu, H.; Zhang, Y.; de Oliveira, A.L.; Ribeiro, R.; Tommaso, G. Anaerobic and photocatalytic treatments of post-hydrothermal liquefaction wastewater using H2O2. Bioresour. Technol. Rep. 2018, 3, 247–255. [CrossRef] Yu, J.; Nickerson, A.; Li, Y.; Fang, Y.; Strathmann, T.J. Fate of Per- and Polyfluoroalkyl substances (PFAS) during hydrothermal liquefaction of Municipal wastewater treatment sludge. Environ. Sci. Water Res. Technol. 2020, 6, 1388–1399. [CrossRef] Watson, J.; Wang, T.; Si, B.; Chen, W.T.; Aierzhati, A.; Zhang, Y. Valorization of hydrothermal liquefaction aqueous phase: Pathways towards commercial viability. Prog. Energy Combust. Sci. 2020, 77, 100819. [CrossRef] McGinn, P.J.; Park, K.C.; Robertson, G.; Scoles, L.; Ma, W.; Singh, D. Strategies for recovery and recycling of nutrients from municipal sewage treatment effluent and hydrothermal liquefaction wastewaters for the growth of the microalga Scenedesmus sp. Algal Res. 2019, 38, 10141. [CrossRef] Sayegh, A.; Prakash, N.S.; Pedersen, T.H.; Horn, H.; Saravia, F. Treatment of hydrothermal liquefaction wastewater with ultrafiltration and air stripping for oil and particle removal and ammonia recovery. J. Water Process Eng. 2021, 44, 102427. [CrossRef] Zhou, Y.; Schideman, L.; Zheng, M.; Martin-Ryals, A.; Li, P.; Tommaso, G.; Zhang, Y. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Water Sci. Technol. 2015, 72, 2139–2147. [CrossRef] [PubMed] Zelaya Soulé, M.E.; Fernández, M.A.; Montes, M.L.; Suárez-García, F.; Torres Sánchez, R.M.; Tascón, J.M.D. Montmorillonite- Hydrothermal carbon nanocomposites: Synthesis, characterization and evaluation of pesticides retention for potential treatment of agricultural wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 12419. [CrossRef] Zhang, K.; Adams, K.J.; Kumar, S.;Wang, Z.-W.; Zheng, Y. A novel biological treatment of hydrothermal carbonization wastewater by using Thraustochytrium stratum. Process Biochem. 2022, 112, 217–222. [CrossRef] Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [CrossRef] Li, Z.; Chen, G.; Ma, H.; Huang, F.; Xu, H.; Zhang, L.; Yuan, X.; Zhang, X.; Chen, S.; Zhou, P. Research on the hydrothermal regeneration of powdered activated coke in wastewater treatment. J. Environ. Chem. Eng. 2023, 11, 109120. [CrossRef] Popa, N.; Visa, M. New hydrothermal charcoal TiO2 composite for the sustainable treatment of wastewater with dyes and cadmium cations load. Mater. Chem. Phys. 2021, 258, 123927. [CrossRef] Wang, X.; Qian, Y.; Chen, H.; Li, X.; Zhang, A.; Li, X.; Chen, C.; He, Y.; Xue, G. Achieving multi-cycle regeneration of activated carbon and Cr(VI) removal over a wide pH range by hydrothermal converting quinonimine dye into difunctional pyrrolic-N: Implication for carbon capture in printing and dyeing wastewater treatment. Chem. Eng. J. 2023, 459, 141646. [CrossRef] Sasaki, M.;Wahyudiono; Yuksel, A.; Goto, M. Applications of hydrothermal electrolysis for conversion of 1-butanol in wastewater treatment. Fuel Process. Technol. 2010, 91, 1125–1132. [CrossRef] Loryuenyong, V.; Ngoyjansri, T.; Yantreesingha, P.; Leelawannakhet, S.; Buasri, A. Hydrothermal synthesis of 11 Å tobermorite from chicken eggshells, rice husks, and soda-lime-silica glasses for wastewater treatment application. J. Optoelectron. Adv. Mater. 2014, 16, 600–605. Falamarzian, S.; Tavakoli, O.; Zarghami, R.; Faramarzi, M.A. Catalytic hydrothermal treatment of pharmaceutical wastewater using sub- and supercritical water reactions. J. Supercrit. Fluid 2014, 95, 265–272. [CrossRef] Bhagwat, U.O.; Kumar, K.R.; Syed, A.; Marraiki, N.; Ponnusamy, V.K.; Anandan, S. Facile hydrothermal synthesis of tungsten tri-oxide/titanium di-oxide nanohybrid structures as photocatalyst for wastewater treatment applications. J. Clust. Sci. 2022, 33, 1327–1336. [CrossRef] Liu, J.-M.; Ji, Z.-Y.; Shi, Y.-B.; Yuan, P.; Guo, X.-F.; Zhao, L.-M.; Li, S.-M.; Li, H.; Yuan, J.-S. Effective treatment of levofloxacin wastewater by an electro-Fenton * process with hydrothermal-activated graphite felt as cathode. Environ. Pollut. 2020, 266, 11534. [CrossRef] [PubMed] Mahmoud, H.R.; El-Molla, S.A.; Salf, M. Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater. Powder Technol. 2013, 249, 225–233. [CrossRef] Masrat, S.; Poolla, R.; Dipak, P.; Zaman, M.B. Rapid hydrothermal synthesis of highly crystalline transition metal (Mn & Fe) doped CuSe nanostructures: Applications in wastewater treatment and room temperature gas sensing. Surf. Interfaces 2021, 23, 100973. [CrossRef] Qiao, Z.; Yan, T.; Zhang, X.; Zhu, C.; Li, W.; Huang, B. Low-temperature hydrothermal synthesis of Zn2SiO4 nanostructures and the novel photocatalytic application in wastewater treatment. Catal. Commun. 2018, 106, 78–81. [CrossRef] Somerset, V.; Petrik, L.; Iwuoha, E.; Otto, D. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: Utilization in wastewater treatment. J. Environ. Sci. Health Part A 2005, 40, 1627–1636. [CrossRef] Sun, B.; Zhou, G.; Shao, C.; Jiang, B.; Pang, J.; Zhang, Y. Spherical mesoporous TIO2 fabricated by sodium dodecylsulfate-assisted hydrothermal treatment and its photocatalitics descomposition of papermaking wastewater. Powder Technol. 2014, 256, 118–125. [CrossRef] Sun, B.; Zhou, G.; Shao, C.; Jiang, B.; Pang, J.; Zhang, Y. Spherical mesoporous TIO2 fabricated by sodium dodecylsulfate-assisted hydrothermal treatment and its photocatalitics descomposition of papermaking wastewater. Powder Technol. 2014, 256, 118–125. [CrossRef] Altiparmaki, G.; Kourletakis, P.; Moustakas, K.; Vakalis, S. Assessing the effect of hydrothermal treatment (HT) severity on the fate of nitrates and phosphates in dairyWastewater. Fuel 2022, 312, 122866. [CrossRef] Itakura, T.; Imaizumi, H.; Sasai, R.; Itoh, H. Phosphorus mineralization for resource recovery from wastewater using hydrothermal treatment. J. Ceram. Soc. Jpn. 2009, 117, 316–319. [CrossRef] Kim, S.-M.; Yoon, I.-H.; Kim, I.; Kim, J.-H.; Park, S.-J. Hydrothermal desorption of Cs with oxalic acid from hydrobiotite and wastewater treatment by chemical precipitation. Energies 2020, 13, 3284. [CrossRef] Sasai, R.; Hirata, K. Selective Crystallization of W by Hydrothermal Treatment of Wastewater Containing W and Mo. Chem. Lett. 2013, 42, 463–464. [CrossRef] Sasai, R.; Matsumoto, Y.; Itakura, T. Continuous-flow detoxification treatment of boron-containing wastewater under hydrothermal conditions. J. Ceram. Soc. Jpn. 2011, 119, 277–281. [CrossRef] Tae, S.-J.; Morita, K. Immobilization of Cr (VI) in Stainless Steel Slag and Cd, As, and Pb in Wastewater Using Blast Furnace Slag via a Hydrothermal Treatment. Met. Mater. Int. 2017, 23, 576–581. [CrossRef] Tae, S.-J.; Morita, K. Evaluation of hydrothermal treatment to immobilize hexavalent chromium in wastewater using granulated blast furnace slag. ISIJ Int. 2008, 48, 1311–1315. [CrossRef] Tang, M.; Li, F.; Yang, M.; Zhang, Y. Degradation of kanamycin from production wastewater with high-concentration organic matrices by hydrothermal treatment. J. Environ. Sci. 2020, 97, 11–18. [CrossRef] Tsai, H.-C.; Lo, S.-L.; Kuo, J. Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater. Bioresour. Technol. 2011, 102, 7802–7806. [CrossRef] Xiao, H.; Lv, B.; Gao, J.; Zhao, G. Hydrothermal electrocatalytic oxidation for the treatment of herbicides wastewater. Environ. Sci. Pollut. Res. 2016, 23, 10050–10057. [CrossRef] Yao, L.; Min, X.; Xu, H.; Ke, Y.; Liang, Y.; Yang, K. Hydrothermal Treatment of Arsenic Sulfide Residues from Arsenic-Bearing Acid Wastewater. Int. J. Environ. Res. Public Health 2018, 15, 1863. [CrossRef] Zhang, Y.; Wang, S.; Gao, Z.; Li, Y.; Xu, T.; Li, J.; Xu, D.; Yang, J. Hydrothermal molten salt: A hydrothermal fluid in SCWO treatment of hypersaline wastewater. Chem. Eng. J. 2021, 421, 129589. [CrossRef] Sun, X.; Atiyeh, H.K.; Li, M.; Chen, Y. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review. Bioresour. Technol. 2020, 295, 122252. [CrossRef] Yang, T.; Gao, N.; Li, B. Biomass hydrothermal carbonization solution-assisted synthesis of intercalation-expanded core–shell structured molybdenum disulfide for efficient adsorption of Cr (VI) in electroplating wastewater treatment. Bioresour. Technol. 2024, 401, 130761. [CrossRef] Zhang, H.; Li, G.; Li,W.; Li, Y.; Zhang, S.; Nie, Y. Biochemical properties of sludge derived hydrothermal liquid products and microbial response of wastewater treatment. Process Biochem. 2024, 144, 294–305. [CrossRef] Xiao, L.; Meng, Y.; Jin, H.; Wang, Y.; Fan, L.; Shen, D.; Long, Y. Conversion of waste-activated sludge from wastewater treatment plants to 5-hydroxymethylfurfural by microwave hydrothermal treatment. Biomass Convers. Biorefin. 2024, 14, 10389–10397. [CrossRef] Zheng, Q.; Ma, Y.; Wan, J.; Wang, Y.; Long, Y.; Xia, X.; Sun, X. Hydrolysate derived from sugarcane bagasse by hydrothermal and enzymatic treatment as an external carbon source for wastewater nitrogen removal. J. Water Process Eng. 2024, 59, 105039. [CrossRef] Liu, M.; Mahata, C.; Wang, Z.; Kumar, S.; Zheng, Y. Comparative exploration of biological treatment of hydrothermal liquefaction wastewater from sewage sludge: Effects of culture, fermentation conditions, and ammonia stripping. J. Environ. Manag. 2024, 349, 119527. [CrossRef] Liu, L.; Zhao, L.; Jin, S.; Zou, W.; Wang, H.; Xie, Y.; Hou, C.; Zhai, Y.; Luo, P. Treatment of sludge hydrothermal carbonization wastewater by ferrous/sodium percarbonate system: Effect of wastewater composition and role of coagulation and oxidation. Water Res. 2024, 267, 122531. [CrossRef] Akbari, H.; Akbari, H.; Fanaei, F.; Adibzadeh, A. Optimization of parameters affecting the hydrothermal carbonization of wastewater treatment plant sewage sludge. Biomass Convers. Biorefin. 2024, 14, 27335–27346. [CrossRef] Karka, P.; Johannsen, I.; Papadokonstantakis, S. Hydrothermal liquefaction integrated with wastewater treatment plants—Life cycle assessment and technoeconomic analysis of process system options. Sustain. Energy Fuels 2024, 8, 3438–3451. [CrossRef] Awan, A.M.; Khalid, A.; Ahmad, P.; Alharthi, A.I.; Farooq, M.; Khan, A.; Khandaker, M.U.; Aldawood, S.; Alotaibi, M.A.; El-Mansi, A.A.; et al. Defects oriented hydrothermal synthesis of TiO2 and MnTiO2 nanoparticles as photocatalysts for wastewater treatment and antibacterial applications. Heliyon 2024, 10, e25579. [CrossRef] Liu, G.; Xu, Q.; Abou-Elwafa, S.F.; Alshehri, M.A.; Zhang, T. Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges. Water 2024, 16, 1749. [CrossRef] Liu, C.; Yue, Z.; Ma, D.; Li, K.; Zhao, P.; Yang, M.; Wang, J. Integration of hydrothermal liquefied sludge as wastewater for anaerobic treatment and energy recovery: Aqueous phase characterization, anaerobic digestion performance and energy balance analysis. J. Water Process Eng. 2024, 60, 105096. [CrossRef] Usman, M.; Shi, Z.; Dutta, N.; Ashraf, M.A.; Ishfaq, B.; El-Din, M.G. Current challenges of hydrothermal treated wastewater (HTWW) for environmental applications and their perspectives: A review. Environ. Res. 2022, 212 Pt D, 113532. [CrossRef] Chen,W.T.; Haque, M.A.; Lu, T.; Aierzhati, A.; Reimonn, G. A perspective on hydrothermal processing of sewage sludge. Curr. Opin. Environ. Sci. Health 2020, 14, 63–73. [CrossRef] [PubMed] Organización de las Naciones Unidas (UNU). Consultado en Línea, Mayo 2023. 2015. Available online: https://www.un.org/ sustainabledevelopment/es/water-and-sanitation/ (accessed on 15 January 2025). University of Illinois Urbana-Champaign (UIUCh). Consultado en línea, Abril. 2023. Available online: https://abe.illinois.edu/ directory/yzhang1 (accessed on 15 January 2025). Scheinman, M. A Guide to Art at the University of Illinois: Urban-Champaign, Robert Allerton Park and Chicago; University of Illinois Press: Champaign, IL, USA, 1995; p. 215. Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state-of-the-art review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [CrossRef] Sevilla, M.; Fuertes, A.B.; Mokaya, R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci. 2011, 4, 1400–1411. [CrossRef] Sevilla, M.; Fuertes, A.B.; Mokaya, R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci. 2011, 4, 1400–1411. [CrossRef] Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá MDPI Water; Vol. 17, Núm. 5 (2025): Water (Feb.);p. 1 - 18.