Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties
Knowing chemical soil properties might be determinant in crop management and total yield production. Traditional soil properties estimation approaches are time-consuming and require complex lab setups, refraining farmers from promptly taking steps towards optimal practices in their crops. Soil pr...
Main Authors: | Delgadillo Durana, Diego A., Vargas García, Cesar A., Varón Ramíreza, Viviana M., Calderón, Francisco C., Montenegroa, Andrea C., Reyes Herreraa, Paula H. |
---|---|
Format: | article |
Language: | Inglés |
Published: |
ArXiv
2025
|
Subjects: | |
Online Access: | https://arxiv.org/abs/2012.12995 http://hdl.handle.net/20.500.12324/41001 |
Similar Items
-
Setting of a mathematical model for the sugarcane bagasse combustion in a Ward-Cimpa chamber
by: Menjura, Oscar Mendieta, et al.
Published: (2018) -
Regional system reconversion of sugarcane seed production for non-centrifuged sugar "panela" agroindustry in Boyacá and Santander
by: Murcia Pardo, Magda Liliana, et al.
Published: (2019) -
Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production
by: Chaali, Nesrine, et al.
Published: (2025) -
Uso de la espectroscopia de reflectancia en el infrarrojo cercano (nirs) para la cuantificación rápida y precisa de triptófano en maíces Colombianos
by: Vásquez, Diana Rocío, et al.
Published: (2018) -
Chemical composition and distribution of dry matter in genotypes of banana and plantain fruits
by: Martínez Cardozo, César, et al.
Published: (2018)