Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties
Knowing chemical soil properties might be determinant in crop management and total yield production. Traditional soil properties estimation approaches are time-consuming and require complex lab setups, refraining farmers from promptly taking steps towards optimal practices in their crops. Soil pr...
| Autores principales: | , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
ArXiv
2025
|
| Materias: | |
| Acceso en línea: | https://arxiv.org/abs/2012.12995 http://hdl.handle.net/20.500.12324/41001 |
Ejemplares similares: Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties
- In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems
- Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
- Setting of a mathematical model for the sugarcane bagasse combustion in a Ward-Cimpa chamber
- Regional system reconversion of sugarcane seed production for non-centrifuged sugar "panela" agroindustry in Boyacá and Santander
- Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production
- Uso de la espectroscopia de reflectancia en el infrarrojo cercano (nirs) para la cuantificación rápida y precisa de triptófano en maíces Colombianos