Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties
Knowing chemical soil properties might be determinant in crop management and total yield production. Traditional soil properties estimation approaches are time-consuming and require complex lab setups, refraining farmers from promptly taking steps towards optimal practices in their crops. Soil pr...
| Main Authors: | , , , , , |
|---|---|
| Format: | Artículo |
| Language: | Inglés |
| Published: |
ArXiv
2025
|
| Subjects: | |
| Online Access: | https://arxiv.org/abs/2012.12995 http://hdl.handle.net/20.500.12324/41001 |
Similar Items: Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties
- Modelo productivo caña de azúcar: componente de cultivo
- Interpretación del análisis de suelo y recomendaciones de fertilizantes para la caña de azúcar
- Socioeconómico y ambiental: manejo y conservación de suelos
- Agro industrial yield of ten sugar cane varieties for production of panela in Santander, Colombia
- ¿Qué es el cadmio y por qué es importante en el cultivo de cacao?
- Setting of a mathematical model for the sugarcane bagasse combustion in a Ward-Cimpa chamber