Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties
Knowing chemical soil properties might be determinant in crop management and total yield production. Traditional soil properties estimation approaches are time-consuming and require complex lab setups, refraining farmers from promptly taking steps towards optimal practices in their crops. Soil pr...
Autores principales: | Delgadillo Durana, Diego A., Vargas García, Cesar A., Varón Ramíreza, Viviana M., Calderón, Francisco C., Montenegroa, Andrea C., Reyes Herreraa, Paula H. |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
ArXiv
2025
|
Materias: | |
Acceso en línea: | https://arxiv.org/abs/2012.12995 http://hdl.handle.net/20.500.12324/41001 |
Ejemplares similares
-
Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
por: Lamos Díaz, Henry, et al.
Publicado: (2024) -
Enhancing irrigation management: Unsupervised machine learning coupled with geophysical and multispectral data for informed decision-making in rice production
por: Chaali, Nesrine, et al.
Publicado: (2025) -
Setting of a mathematical model for the sugarcane bagasse combustion in a Ward-Cimpa chamber
por: Menjura, Oscar Mendieta, et al.
Publicado: (2018) -
Regional system reconversion of sugarcane seed production for non-centrifuged sugar "panela" agroindustry in Boyacá and Santander
por: Murcia Pardo, Magda Liliana, et al.
Publicado: (2019) -
Uso de la espectroscopia de reflectancia en el infrarrojo cercano (nirs) para la cuantificación rápida y precisa de triptófano en maíces Colombianos
por: Vásquez, Diana Rocío, et al.
Publicado: (2018)