Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate

El cadmio (Cd) es uno de los metales pesados más tóxico. Su alta movilidad y poder bioacumulativo lo diferencian del resto de los de su grupo y motivan el interés de los científicos por conocer sus efectos e interacción con las plantas. En el presente trabajo, se realizó una revisión bibliográfica d...

Full description

Bibliographic Details
Main Authors: Hernández Baranda, Yenisei, Rodríguez Hernández, Pedro, Peña Icart, Mirella, Meriño Hernández, Yanitza, Cartaya Rubio, Omar
Format: article
Language:Español
Published: Instituto Nacional de Ciencias Agrícolas - INCA 2024
Subjects:
Online Access:http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0258-59362019000300010&lng=en&nrm=iso&tlng=en
http://hdl.handle.net/20.500.12324/40177
http://ediciones.inca.edu.cu
id RepoAGROSAVIA40177
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Investigación agropecuaria - A50
Tomate
Metal pesado
Cadmio
Toxicidad
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_2223
http://aims.fao.org/aos/agrovoc/c_1178
http://aims.fao.org/aos/agrovoc/c_7826
spellingShingle Investigación agropecuaria - A50
Tomate
Metal pesado
Cadmio
Toxicidad
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_2223
http://aims.fao.org/aos/agrovoc/c_1178
http://aims.fao.org/aos/agrovoc/c_7826
Hernández Baranda, Yenisei
Rodríguez Hernández, Pedro
Peña Icart, Mirella
Meriño Hernández, Yanitza
Cartaya Rubio, Omar
Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate
description El cadmio (Cd) es uno de los metales pesados más tóxico. Su alta movilidad y poder bioacumulativo lo diferencian del resto de los de su grupo y motivan el interés de los científicos por conocer sus efectos e interacción con las plantas. En el presente trabajo, se realizó una revisión bibliográfica de los principales mecanismos de entrada y transporte del Cd en las plantas y sus efectos tóxicos en las mismas. También, se abordan temas como, los mecanismos de defensa de las plantas ante el estrés por Cd y las estrategias existentes para disminuir su toxicidad. Dentro de los diferentes cultivos, el tomate resulta de especial interés, debido a que es la hortaliza más difundida en el mundo y ha mostrado ser una planta tolerante al Cd y con potencialidades para su acumulación.
format article
author Hernández Baranda, Yenisei
Rodríguez Hernández, Pedro
Peña Icart, Mirella
Meriño Hernández, Yanitza
Cartaya Rubio, Omar
author_facet Hernández Baranda, Yenisei
Rodríguez Hernández, Pedro
Peña Icart, Mirella
Meriño Hernández, Yanitza
Cartaya Rubio, Omar
author_sort Hernández Baranda, Yenisei
title Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate
title_short Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate
title_full Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate
title_fullStr Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate
title_full_unstemmed Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate
title_sort toxicidad del cadmio en las plantas y estrategias para disminuir sus efectos. estudio de caso: el tomate
publisher Instituto Nacional de Ciencias Agrícolas - INCA
publishDate 2024
url http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0258-59362019000300010&lng=en&nrm=iso&tlng=en
http://hdl.handle.net/20.500.12324/40177
http://ediciones.inca.edu.cu
work_keys_str_mv AT hernandezbarandayenisei toxicidaddelcadmioenlasplantasyestrategiasparadisminuirsusefectosestudiodecasoeltomate
AT rodriguezhernandezpedro toxicidaddelcadmioenlasplantasyestrategiasparadisminuirsusefectosestudiodecasoeltomate
AT penaicartmirella toxicidaddelcadmioenlasplantasyestrategiasparadisminuirsusefectosestudiodecasoeltomate
AT merinohernandezyanitza toxicidaddelcadmioenlasplantasyestrategiasparadisminuirsusefectosestudiodecasoeltomate
AT cartayarubioomar toxicidaddelcadmioenlasplantasyestrategiasparadisminuirsusefectosestudiodecasoeltomate
AT hernandezbarandayenisei toxicityofcadmiuminplantsandstrategiestoreduceitseffectscasestudythetomato
AT rodriguezhernandezpedro toxicityofcadmiuminplantsandstrategiestoreduceitseffectscasestudythetomato
AT penaicartmirella toxicityofcadmiuminplantsandstrategiestoreduceitseffectscasestudythetomato
AT merinohernandezyanitza toxicityofcadmiuminplantsandstrategiestoreduceitseffectscasestudythetomato
AT cartayarubioomar toxicityofcadmiuminplantsandstrategiestoreduceitseffectscasestudythetomato
_version_ 1842255830674571264
spelling RepoAGROSAVIA401772024-09-25T03:01:20Z Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: el tomate Toxicity of Cadmium in plants and strategies to reduce its effects. Case study: The tomato Hernández Baranda, Yenisei Rodríguez Hernández, Pedro Peña Icart, Mirella Meriño Hernández, Yanitza Cartaya Rubio, Omar Investigación agropecuaria - A50 Tomate Metal pesado Cadmio Toxicidad Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_7805 http://aims.fao.org/aos/agrovoc/c_2223 http://aims.fao.org/aos/agrovoc/c_1178 http://aims.fao.org/aos/agrovoc/c_7826 El cadmio (Cd) es uno de los metales pesados más tóxico. Su alta movilidad y poder bioacumulativo lo diferencian del resto de los de su grupo y motivan el interés de los científicos por conocer sus efectos e interacción con las plantas. En el presente trabajo, se realizó una revisión bibliográfica de los principales mecanismos de entrada y transporte del Cd en las plantas y sus efectos tóxicos en las mismas. También, se abordan temas como, los mecanismos de defensa de las plantas ante el estrés por Cd y las estrategias existentes para disminuir su toxicidad. Dentro de los diferentes cultivos, el tomate resulta de especial interés, debido a que es la hortaliza más difundida en el mundo y ha mostrado ser una planta tolerante al Cd y con potencialidades para su acumulación. Tomate-Solanum lycopersicum 2024-09-24T19:03:35Z 2024-09-24T19:03:35Z 2019-09-01 2019 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0258-59362019000300010&lng=en&nrm=iso&tlng=en 1819-4087 http://hdl.handle.net/20.500.12324/40177 http://ediciones.inca.edu.cu reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Cultivos Tropicales 40 3 1 19 Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology. 2009;238(3):201–8. doi:10.1016/j.taap.2009.04.020 Duressa TF, Leta S. Determination of levels of As, Cd, Cr, Hg and Pb in soils and some vegetables taken from river mojo water irrigated farmland at Koka Village, Oromia State, East Ethiopia. International Journal of Sciences: Basic and Applied Research. 2015;21(2):352–72. Gimba CE, Ndukwe GI, Paul ED, Habila JD, Madaki LA. Heavy metals (Cd, Cu, Fe, Mn and Zn,) assessment of groundwater, in Kaltungo LGA, Gombe State, Nigeria. International Journal of Science and Technology. 2015;4(2):49–56. Abdel-Satar AM, Ali MH, Goher ME. Indices of water quality and metal pollution of Nile River, Egypt. The Egyptian Journal of Aquatic Research. 2017;43(1):21–9. Ahmad MK, Islam S, Rahman MS, Haque MR, Islam MM. Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. International Journal of Environmental Research. 2010;4(2):321–32. Mohod CV. A review on the concentration of the heavy metals in vegetable samples like spinach and tomato grown near the area of Amba Nalla of Amravati City. International Journal of Innovative Research in Science, Engineering and Technology. 2015;4(5):2788–92. Olivares Rieumont S, García Céspedes D, Lima Cazorla L, Saborit Sánchez I, Llizo Casals A, Pérez Álvares P. Niveles de cadmio, plomo, cobre y zinc en hortalizas cultivadas en una zona altamente urbanizada de la ciudad de la Habana, Cuba. Revista internacional de contaminación ambiental. 2013;29(4):285–94. Ogawa T, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K. Relationship among prevalence of patients with Itai-itai disease, prevalence of abnormal urinary findings, and cadmium concentrations in rice of individual hamlets in the Jinzu River basin, Toyama prefecture of Japan. International Journal of Environmental Health Research. 2004;14(4):243–52. doi:10.1080/09603120410001725586 Huang B, Xin J, Dai H, Liu A, Zhou W, Yi Y, et al. Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environmental Science and Pollution Research. 2015;22(2):1151–9. Jinadasa N, Collins D, Holford P, Milham PJ, Conroy JP. Reactions to cadmium stress in a cadmium-tolerant variety of cabbage Brassica oleracea L.): is cadmium tolerance necessarily desirable in food crops? Environmental Science and Pollution Research. 2016;23(6):5296–306. Hédiji H, Djebali W, Belkadhi A, Cabasson C, Moing A, Rolin D, et al. Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: consequences on fruit production. South African Journal of Botany. 2015;97:176–81. Lösch R. Plant mitochondrial respiration under the influence of heavy metals. In: Heavy Metal Stress in Plants. Springer; 2004. p. 182–200. Myśliwa-Kurdziel B, Prasad MNV, Strzałtka K. Photosynthesis in Heavy Metal Stressed Plants. In: Prasad MNV, editor. Heavy Metal Stress in Plants: From Biomolecules to Ecosystems [Internet]. Berlin, Heidelberg: Springer; 2004 [cited 2019 Nov 18]. p. 146–81. doi:10.1007/978-3-662-07743-6_6 Nogueirol RC, Monteiro FA, Gratão PL, da Silva BK de A, Azevedo RA. Cadmium application in tomato: nutritional imbalance and oxidative stress. Water, Air, & Soil Pollution. 2016;227(6):210. Li X, Zhou Q, Sun X, Ren W. Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion Allium fistulosum L.) cultivars. Food chemistry. 2016;194:101–10. Shaw BP, Sahu SK, Mishra RK. Heavy metal induced oxidative damage in terrestrial plants. In: Heavy metal stress in plants. Springer; 2004. p. 84–126. Clemens S, Palmgren MG, Krämer U. A long way ahead: understanding and engineering plant metal accumulation. Trends in plant science. 2002;7(7):309–15. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88(11):1707–19. Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American Journal of Plant Sciences. 2012;3(10):1476. Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, et al. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC plant biology. 2011;11(1):75. Savvas D, Ntatsi G, Barouchas P. Impact of grafting and rootstock genotype on cation uptake by cucumber Cucumis sativus L.) exposed to Cd or Ni stress. Scientia Horticulturae. 2013;149:86–96. doi:10.1016/j.scienta.2012.06.030 Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, et al. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. BioMetals. 2015;28(5):803–16. doi:10.1007/s10534-015-9867-3 Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, et al. Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma. 2017;254(2):771–83. Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, et al. Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany. 2016;104:61–8. Kimura S, Sinha N. Tomato Solanum lycopersicum: a model fruit-bearing crop. Cold Spring Harbor Protocols. 2008;(11):pdb. emo105. He L-Y, Chen Z-J, Ren G-D, Zhang Y-F, Qian M, Sheng X-F. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicology and Environmental Safety. 2009;72(5):1343–8. Seregin IV, Ivanov VB. Is the endodermal barrier the only factor preventing the inhibition of root branching by heavy metal salts? Russian Journal of Plant Physiology. 1997;44(6):797–800. Song Y, Jin L, Wang X. Cadmium absorption and transportation pathways in plants. International journal of phytoremediation. 2017;19(2):133–41. Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Current Opinion in Plant Biology. 2011;14(5):554–62. doi:10.1016/j.pbi.2011.07.004 Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant, cell & environment. 2011;34(6):994–1008. Lux A, Martinka M, Vaculík M, White PJ. Root responses to cadmium in the rhizosphere: a review. Journal of experimental botany. 2010;62(1):21–37. Mendoza‐Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, et al. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. The Plant Journal. 2008;54(2):249–59. doi:10.1111/j.1365-313X.2008.03410.x Godbold DL, Hüttermann A. Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest dieback. Environmental Pollution Series A, Ecological and Biological. 1985;38(4):375–81. Xin J, Huang B, Dai H, Liu A, Zhou W, Liao K. Characterization of cadmium uptake, translocation, and distribution in young seedlings of two hot pepper cultivars that differ in fruit cadmium concentration. Environmental Science and Pollution Research. 2014;21(12):7449–56. Monteiro MS, Santos C, Soares A, Mann RM. Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental safety. 2009;72(3):811–8. Wang P, Deng X, Huang Y, Fang X, Zhang J, Wan H, et al. Root morphological responses of five soybean Glycine max (L.) Merr] cultivars to cadmium stress at young seedlings. Environmental Science and Pollution Research. 2016;23(2):1860–72. Agrawal SB, Mishra S. Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicology and environmental safety. 2009;72(2):610–8. Hassan W, Bano R, Bashir S, Aslam Z. Cadmium toxicity and soil biological index under potato Solanum tuberosum L.) cultivation. Soil Research. 2016;54(4):460–8. Xue Z, Gao H, Zhao S. Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants. Environmental Science and Pollution Research. 2014;21(6):4656–64. Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML. Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Functional plant biology. 2003;30(1):57–64. Metwally A, Safronova VI, Belimov AA, Dietz K-J. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany. 2004;56(409):167–78. Zhi Y, He K, Sun T, Zhu Y, Zhou Q. Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils. Journal of Environmental Sciences. 2015;35:108–14. Bertoli AC, Cannata MG, Carvalho R, Bastos ARR, Freitas MP, dos Santos Augusto A. Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: nutrient contents and translocation. Ecotoxicology and environmental safety. 2012;86:176–81. Dong J, Wu F, Zhang G. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings Lycopersicon esculentum. Chemosphere. 2006;64(10):1659–66. doi:10.1016/j.chemosphere.2006.01.030 Khan A, Khan S, Alam M, Khan MA, Aamir M, Qamar Z, et al. Toxic metal interactions affect the bioaccumulation and dietary intake of macro-and micro-nutrients. Chemosphere. 2016;146:121–8. Nogueirol RC, Monteiro FA, Gratão PL, da Silva BK de A, Azevedo RA. Cadmium application in tomato: nutritional imbalance and oxidative stress. Water, Air, & Soil Pollution. 2016;227(6):210. Zhao S, Ma Q, Xu X, Li G, Hao L. Tomato Jasmonic Acid-Deficient Mutant spr2 Seedling Response to Cadmium Stress. Journal of Plant Growth Regulation. 2016;35(3):603–10. doi:10.1007/s00344-015-9563-0 Sandalio LM, Dalurzo HC, Gómez M, Romero‐Puertas MC, del Río LA. Cadmium‐induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany. 2001;52(364):2115–26. doi:10.1093/jexbot/52.364.2115 Salin ML. Toxic oxygen species and protective systems of the chloroplast. Physiologia Plantarum. 1988;72(3):681–9. doi:10.1111/j.1399-3054.1988.tb09182.x Florijn PJ, Van Beusichem ML. Uptake and distribution of cadmium in maize inbred lines. Plant and soil. 1993;150(1):25–32. Verkleij J, Shaw J. Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press; 179AD. 372 p. Wang X, Song Y, Ma Y, Zhuo R, Jin L. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa Medicago sativa L.). Environmental pollution. 2011;159(12):3627–33. Wang P, Deng X, Huang Y, Fang X, Zhang J, Wan H, et al. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings. Environmental Science and Pollution Research. 2015;22(24):19584–95. Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany. 2002;53(366):1–11. doi:10.1093/jexbot/53.366.1 Pomponi M, Censi V, Di Girolamo V, De Paolis A, Di Toppi LS, Aromolo R, et al. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd 2+ tolerance and accumulation but not translocation to the shoot. Planta. 2006;223(2):180–90. Nussbaum S, Schmutz D, Brunold C. Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiology. 1988;88(4):1407–10. Rüegsegger A, Brunold C. Effect of Cadmium on γ-Glutamylcysteine Synthesis in Maize Seedlings. Plant Physiology. 1992;99(2):428–33. doi:10.1104/pp.99.2.428 Chen J, Goldsbrough PB. Increased activity of [gamma]-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant physiology. 1994;106(1):233–9. de Knecht JA, Koevoets PL, Verkleij JA, Ernst WH. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytologist. 1992;122(4):681–8. Hediji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, et al. Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicology and environmental safety. 2010;73(8):1965–74. Baker AJM, McGrath S, Reeves D, Smith J, Terry N, Banuelos G. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation of contaminated soil and water. 2000;171–88. He S, He Z, Yang X, Stoffella PJ, Baligar VC. Chapter Four-Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils (DL Sparks, Ed.). 2015;135–225. Andal FA. Assessment of the possible utilization of tomato as a phytoremediant in soils artificially contaminated with heavy metals. International Journal of Applied Environmental Sciences. 2016;11(1):193–209. Sbartai H, Sbartai I, Djebar MR, Berrebbah H. Phytoremediation of contaminated soils by heavy metals - “Case Tomato” | International Society for Horticultural Science. Acta Horticulturae. 2017;95–100. López-Millán A-F, Sagardoy R, Solanas M, Abadía A, Abadía J. Cadmium toxicity in tomato Lycopersicon esculentum plants grown in hydroponics. Environmental and Experimental Botany. 2009;65(2–3):376–85. Xie W, Xiong S, Xu W, Chen R, Zhang J, Xiong Z. Effect of exogenous lanthanum on accumulation of cadmium and its chemical form in tomatoes. Wuhan University Journal of Natural Sciences. 2014;19(3):221–8. Yang Y, ZHou K, Xu WH, Jian L, Wang CL, Xiong SJ, et al. Effect of exogenous iron on photosynthesis, quality, and accumulation of cadmium in different varieties of tomato. J Plant Nutr Fertil. 2015;21(4):1006–15. Mediouni C, Benzarti O, Tray B, Ghorbel MH, Jemal F. Cadmium and copper toxicity for tomato seedlings. 2006;227–32. Brown SL, Angle JS, Chaney RL, Baker AJM. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal. 1995;59(1):125–33. Rehman F, Khan FA, Varshney D, Naushin F, Rastogi J. Effect of cadmium on the growth of tomato. Biol Med. 2011;3(2):187–90. Hasan SA, Hayat S, Ahmad A. Screening of tomato Lycopersicon esculentum cultivars against cadmium through shotgun approach. Journal of Plant Interactions. 2009;4(3):187–201. doi:10.1080/17429140802474412 Hussain MM, Saeed A, Khan AA, Javid S, Fatima B. Differential responses of one hundred tomato genotypes grown under cadmium stress. Genetics and Molecular Research. 2015;14(4):13162–71. Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, et al. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat Triticum aestivum L. under Cd stress. Archives of Agronomy and Soil Science. 2016;62(4):533–46. Samet H, Çikili Y, Atikmen NÇ. Role of Potassium in Alleviation of Cadmium Toxicity in Sunflower Helianthus annuus L. Journal of Agricultural Faculty of Gaziosmanpasa University (JAFAG). 2017;34(1):179–88. Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science. 2005;168(4):521–30. Kao CH. Cadmium stress in rice plants: influence of essential elements. Crop Environ. Bioinform. 2014;11:113–8. Liu C-H, Chao Y-Y, Kao CH. Effect of potassium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Botanical studies. 2013;54(1):2. Chou T-S, Chao Y-Y, Huang W-D, Hong C-Y, Kao CH. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Journal of Plant Physiology. 2011;168(10):1021–30. Cho S-C, Chao Y-Y, Kao CH. Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. Journal of plant physiology. 2012;169(9):892–8. Lin Y-L, Chao Y-Y, Huang W-D, Kao CH. Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings. Plant Growth Regulation. 2011;64(3):263–73. Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA. Sulphur protects mustard Brassica campestris L. from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regulation. 2008;54(3):271–9. Bashir H, Ibrahim MM, Bagheri R, Ahmad J, Arif IA, Baig MA, et al. Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants. 2015;7. Rizwan M, Ali S, Hussain A, Ali Q, Shakoor MB, Zia-ur-Rehman M, et al. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat Triticum aestivum L.) and health risk assessment. Chemosphere. 2017;187:35–42. Li M-Q, Hasan MK, Li C-X, Ahammed GJ, Xia X-J, Shi K, et al. Melatonin mediates selenium‐induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research. 2016;61(3):291–302. Wu J, Guo J, Hu Y, Gong H. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in plant science. 2015;6:453. Shi G, Cai Q, Liu C, Wu L. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation. 2010;61(1):45–52. Ashraf M, Imtiaz M, Abid M, Afzal M, Shahzad SM. Reuse of wastewater for irrigating tomato plants Lycopersicon esculentum L.) through silicon supplementation. Journal of Water Reuse and Desalination. 2013;3(2):128–39. Lu H, Li Z, Wu J, Shen Y, Li Y, Zou B, et al. Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Scientific reports. 2017;7:40583. Carneiro JM, Chacón-Madrid K, Galazzi RM, Campos BK, Arruda SC, Azevedo RA, et al. Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. Journal of Trace Elements in Medicine and Biology. 2017;44:50–8. Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environmental and experimental botany. 2016;122:19–28. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Instituto Nacional de Ciencias Agrícolas - INCA Cultivos Tropicales; Vol.40 , Núm. 3 (2019): Cultivos Tropicales (Sep.);p. 1 - 19.