Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition

Hyperhydricity can affect the development of plant morphology. A better understanding of the anatomical and physiological changes of hyperhydric plants is needed to predict and control the occurrence of hyperhydryc conditions. The aim of this study is to demonstrate the role of oxidative stress in...

Full description

Bibliographic Details
Main Authors: Garcia, Yudith Yanet, Barrera, Gloria Patricia, Freire, Marisol, Barbón, Raúl, Torres, Sinesio
Format: article
Language:Inglés
Published: Research Square 2024
Subjects:
Online Access:https://www.researchsquare.com/article/rs-1886347
http://hdl.handle.net/20.500.12324/40151
https://doi.org/10.21203/rs.3.rs-1886347/v1
id RepoAGROSAVIA40151
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Genética vegetal y fitomejoramiento - F30
Bambusa vulgaris
Morfología
Brote
In vitro
Transversal
http://aims.fao.org/aos/agrovoc/c_805
http://aims.fao.org/aos/agrovoc/c_49903
http://aims.fao.org/aos/agrovoc/c_14261
http://aims.fao.org/aos/agrovoc/c_37563
spellingShingle Genética vegetal y fitomejoramiento - F30
Bambusa vulgaris
Morfología
Brote
In vitro
Transversal
http://aims.fao.org/aos/agrovoc/c_805
http://aims.fao.org/aos/agrovoc/c_49903
http://aims.fao.org/aos/agrovoc/c_14261
http://aims.fao.org/aos/agrovoc/c_37563
Garcia, Yudith Yanet
Barrera, Gloria Patricia
Freire, Marisol
Barbón, Raúl
Torres, Sinesio
Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition
description Hyperhydricity can affect the development of plant morphology. A better understanding of the anatomical and physiological changes of hyperhydric plants is needed to predict and control the occurrence of hyperhydryc conditions. The aim of this study is to demonstrate the role of oxidative stress in hyperhydricity. To this end, the anatomical, physiological and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl were compared during the in vitro-ex vitro transition. For this propose, we used shoots grown in two different culture systems: liquid static culture medium and temporary immersion system. Our results showed that hyperhydricity was associated with oxidative stress in the shoots. In hyperhydric shoots chlorophyll content decreased when cultured in liquid static culture medium. Moreover, hydrogen peroxide content and malondialdehyde, as well as the activities of catalase and enzymes of ascorbate-glutathione cycle (ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase) were increased in these shoots. On the other hand, scanning electron microscopy showed that the leaves of hyperhydric shoots exhibited anatomical changes in the stomata of the plants, whereas the leaves of normal shoots showed normal structural development. Finally, normal shoots showed high survival rate and allowed better adaptation of the plantlets in the greenhouse.
format article
author Garcia, Yudith Yanet
Barrera, Gloria Patricia
Freire, Marisol
Barbón, Raúl
Torres, Sinesio
author_facet Garcia, Yudith Yanet
Barrera, Gloria Patricia
Freire, Marisol
Barbón, Raúl
Torres, Sinesio
author_sort Garcia, Yudith Yanet
title Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition
title_short Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition
title_full Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition
title_fullStr Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition
title_full_unstemmed Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition
title_sort anatomical and biochemical responses to oxidative stress in shoots of bambusa vulgaris schrad. ex wendl during the in vitro-ex vitro transition
publisher Research Square
publishDate 2024
url https://www.researchsquare.com/article/rs-1886347
http://hdl.handle.net/20.500.12324/40151
https://doi.org/10.21203/rs.3.rs-1886347/v1
work_keys_str_mv AT garciayudithyanet anatomicalandbiochemicalresponsestooxidativestressinshootsofbambusavulgarisschradexwendlduringtheinvitroexvitrotransition
AT barreragloriapatricia anatomicalandbiochemicalresponsestooxidativestressinshootsofbambusavulgarisschradexwendlduringtheinvitroexvitrotransition
AT freiremarisol anatomicalandbiochemicalresponsestooxidativestressinshootsofbambusavulgarisschradexwendlduringtheinvitroexvitrotransition
AT barbonraul anatomicalandbiochemicalresponsestooxidativestressinshootsofbambusavulgarisschradexwendlduringtheinvitroexvitrotransition
AT torressinesio anatomicalandbiochemicalresponsestooxidativestressinshootsofbambusavulgarisschradexwendlduringtheinvitroexvitrotransition
_version_ 1842256197634228224
spelling RepoAGROSAVIA401512024-09-21T03:02:54Z Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition Anatomical and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl during the in vitro-ex vitro transition Garcia, Yudith Yanet Barrera, Gloria Patricia Freire, Marisol Barbón, Raúl Torres, Sinesio Genética vegetal y fitomejoramiento - F30 Bambusa vulgaris Morfología Brote In vitro Transversal http://aims.fao.org/aos/agrovoc/c_805 http://aims.fao.org/aos/agrovoc/c_49903 http://aims.fao.org/aos/agrovoc/c_14261 http://aims.fao.org/aos/agrovoc/c_37563 Hyperhydricity can affect the development of plant morphology. A better understanding of the anatomical and physiological changes of hyperhydric plants is needed to predict and control the occurrence of hyperhydryc conditions. The aim of this study is to demonstrate the role of oxidative stress in hyperhydricity. To this end, the anatomical, physiological and biochemical responses to oxidative stress in shoots of Bambusa vulgaris Schrad. ex Wendl were compared during the in vitro-ex vitro transition. For this propose, we used shoots grown in two different culture systems: liquid static culture medium and temporary immersion system. Our results showed that hyperhydricity was associated with oxidative stress in the shoots. In hyperhydric shoots chlorophyll content decreased when cultured in liquid static culture medium. Moreover, hydrogen peroxide content and malondialdehyde, as well as the activities of catalase and enzymes of ascorbate-glutathione cycle (ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase) were increased in these shoots. On the other hand, scanning electron microscopy showed that the leaves of hyperhydric shoots exhibited anatomical changes in the stomata of the plants, whereas the leaves of normal shoots showed normal structural development. Finally, normal shoots showed high survival rate and allowed better adaptation of the plantlets in the greenhouse. Educational Network in Agrobiodiversity - EDUNABIO 2024-09-20T15:04:09Z 2024-09-20T15:04:09Z 2022-08-01 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.researchsquare.com/article/rs-1886347 2693-501 http://hdl.handle.net/20.500.12324/40151 https://doi.org/10.21203/rs.3.rs-1886347/v1 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Research Square 1 1 1 16 Aebi H (1984) Catalase in vitro. In Methods in Enzymology. 105: 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 Apóstolo NM, Llorente BE (2000) Anatomy of normal and hyperhydric leaves and shoots of in vitro grown Simmondsia chinesis (Link) Schn. In Vitro Cellular & Developmental Biology – Plant. 36(4):243–249. https://doi.org/10.1007/s11627-000-0045-z Balen B, Peharec P, Tkalec M, Krsnik-Rasol M (2011) Oxidative stress in horseradish (Armoracia lapathifolia Gilib.) tissues grown in vitro. Food Technology and Biotechnology. 49(1): 32. Balen, B, Tkalec M, Pavoković D, Pevalek-Kozlina B, Krsnik-Rasol M (2009) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. Journal of Plant Growth Regulation. 28(1): 36-45. https://doi.org/10.1007/s00344-008-9072-5 Beena D, Rathore T, Rao P (2012) Effects of Carbohydrates on in vitro axillary shoot initiation and multiplication of Bambusa pallida Munro. Journal of Phytology. 4(5): 55-58. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 Chakrabarty D, Park S, Ali M, Shin K, Paek K (2006) Hyperhydricity in apple: ultrastuctural and physiological aspects. Tree Physiology. 26(3): 377-388. https://doi.org/10.1093/treephys/26.3.377 Chen G, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant and Cell Physiology. 30(7): 987-998. https://doi.org/10.1093/oxfordjournals.pcp.a077844 De Gara L, Paciolla C, De Tullio M, Motto M, Arrigoni O (2000) Ascorbate‐dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiologia Plantarum. 109(1): 7-13. https://doi.org/10.1034/j.1399-3054.2000.100102.x Desai P, Desai S, Patel A (2019) Development of efficient micropropagation protocol through axillary shoot proliferation for Bambusa vulgaris ‘wamin’and Bambusa bambos and assessment of clonal fidelity of the micropropagated plants through random amplified polymorphic DNA markers. Agriculture and Natural Resources. 53(1): 26-32. https://doi.org/10.34044/j.anres.2019.53.1.04 Dewir Y, Chakrabarty D, Ali M, Hahn E, Paek K (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environmental and experimental botany. 58(1-3): 93-99. https://doi.org/10.1016/j.envexpbot.2005.06.019 Dewir Y, El-Mahrouk M, Hafez Y, Teixeira da Silva J, Naidoo Y (2015) Hyperhydricity in African violet (Saintpaulia ionantha H. Wendl)—biochemical aspects of normal versus hyperhydric shoots regenerated via direct adventitious shoots formation. Propag Ornam Plants. 15: 53-62. dos Santos Ribeiro A, de Figueiredo A, Tormen G, da Silva A, Campos W, Brondani G (2020) Clonal bamboo production based on in vitro culture. Bioscience Journal: 36(4): 1261-1273 Dutta Gupta S, Prasad V (2010) Shoot multiplication kinetics and hyperhydric status of regenerated shoots of gladiolus in agar-solidified and matrix-supported liquid cultures. Plant Biotechnology Reports. 4(1): 85-94. https://doi.org/10.1007/s11816-009-0124-5 Gajjar H, Raval A, Raval H, Patel H, Ramchandra S (2017) In vitro propagation of Bambusa vulgaris through branch node. International Journal of Current Research and Academic Review. 5(8): 12-17. https://doi.org/10.20546/ijcrar.2017.508.002 Gao H, Li J, Ji H, An L, Xia X (2018) Hyperhydricity-induced ultrastructural and physiological changes in blueberry (Vaccinium spp.). Plant Cell, Tissue and Organ Culture (PCTOC). 133(1): 65-76. https://doi.org/10.1007/s11240-017-1361-x García-Ramírez Y (2021) Obtención de plantas de Bambusa vulgaris Schrad. ex Wendl con calidad morfo-fisiológica en medio de cultivo líquido. Tesis Doctoral. Universidad Central´´ Marta Abreu´´ de Las Villas. pp 52-55 García-Ramírez Y, Barrera G, Freire-Seijo M, Barbón R, Concepción-Hernández M, Mendoza-Rodríguez M, Torres-García S (2019) Effect of sucrose on physiological and biochemical changes of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Plant Cell, Tissue and Organ Culture. 137(2): 239-247. https://doi.org/10.1007/s11240-019-01564-z García-Ramírez Y, Freire-Seijo M, Pérez B, Hurtado O (2010) Establecimiento in vitro de Bambusa vulgaris var vulgaris Schrad. ex Wendl. en diferentes épocas del año. Biotecnología vegetal. 10(3): 151-156. García-Ramírez Y, González-González M, Torres García S et al (2016) Efecto de la densidad de inóculo sobre la morfología y fisiología de los brotes de Bambusa vulgaris Schrad. ex Wendl cultivados en Sistema de Inmersión Temporal. Biotecnología Vegetal. 16:231–237 Hameed A, Goher M, Iqbal N (2013) Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves. Biologia Plantarum. 57(2): 370-374. https://doi.org//110.1007/s10535-012-0286-9 Hazarika B (2006) Morpho-physiological disorders in vitro culture of plants. Scientia Horticulturae. 108(2): 105-120. https://doi.org/10.1016/j.scienta.2006.01.038 Isah T (2019) Changes in the biochemical parameters of albino, hyperhydric and normal green leaves of Caladium bicolor cv.“Bleeding hearts” in vitro long-term cultures. Journal of Photochemistry and Photobiology B: Biology. 191: 88-98. https://doi.org/10.1016/j.jphotobiol.2018.12.017 Kozai T (2010) Photoautotrophic micropropagation-environmental control for promoting photosynthesis. Propagation of Ornamental Plants. 10(4): 188-204 Krishnakumar N, Kanna S, Parthiban K, Rajendran P (2017) Physical properties of thorn less bamboos (Bambusa balcooa and Bambusa vulgaris). Agriculture Update. 12: 946-951. https://doi: 10.15740/HAS/AU/12.TECHSEAR(4)2017/946-951 Larekeng S, Gusmiaty G, Nadhilla D (2020) In-Vitro Shoot Induction of Pring Tutul (Bambusa maculata) through in Various Plant Growth Regulators (PGR). In IOP Conference Series: Earth and Environmental Science. 575(1): 012139). IOP Publishing. https://doi:10.1088/1755- 1315/575/1/012139 Malik B, Pirzadah T, Tahir I, Rehman R, Hakeem K, Abdin M (2014) Plant signaling: response to reactive oxygen species plant signaling: understanding the molecular crosstalk. Springer, pp 1-38. https://doi.org/10.1007/978-81-322-1542-4_1 Mittler R (2017) ROS are good. Trends in Plant Science. 22(1): 11-19. https://doi.org/10.1016/j.tplants.2016.08.002 Muneer S, Soundararajan P, Jeong B (2016) Proteomic and antioxidant analysis elucidates the underlying mechanism of tolerance to hyperhydricity stress in in vitro shoot cultures of Dianthus caryophyllus. Journal of Plant Growth Regulation. 35(3): 667-679. https://doi.org/10.1007/s00344- 015-9569-7 Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 15(3): 473-497. https ://doi.org/10.1111/j.1399-3054.1962.tb080 52.x Naz S, Perveen S (2021) Response of wheat (Triticum aestivum L. var. galaxy-2013) to pre-sowing seed treatment with thiourea under drought stress. Pak J Bot. 53(4): 1209-17. Palhares Neto L, de Souza L, de Morais M, de Albuquerque C, Camara T, Ulisses C (2018) Controlling hyperhydricity in micropropagated plants of Lippia grata Schauer (Verbenaceae), a native species of a dry seasonal tropical forest with pharmacological potential. Brazilian Journal of Botany. 41(3): 529-538. https://doi.org/10.1007/s40415-018-0476-6 Palma D, Schuelter AR, Stefanello S, Fortes AMT (2011) Aspectos morfofisiológicos e controle da hiperhidricidade na cultura de tecidos vegetais. Revista Brasileira de Agrociência.17:174–184. Pattanaik S, Das P, Borah E, Kaur H, Borah K (2004) Vegetative multiplication of Bambusa balcooa Roxb. using branch cuttings. Journal of Bamboo and Rattan. 4: 365-374. Petruş-Vancea A (2018) Cell ultrastructure and chlorophyll pigments in hyperhydric and nonhyperhydric Beta vulgaris var. Conditiva plantlets, treated with deuterium depleted water. Plant Cell, Tissue and Organ Culture (PCTOC). 135(1): 13-21. https://doi.org/10.1007/s11240-018-1439-0 Picoli EA, Otoni WC, Figueira ML, Carolino S, Almeida RS, Silva EA, Carvalho CR, Fontes EP (2001) Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (binding protein). Plant Science. 160(5):857–868. https://doi.org/10.1016/S0168- 9452(00)00463-5 Perveen S, Anis M, Aref I (2013) Lipid peroxidation, H2O2 content, and antioxidants during acclimatization of Abrus precatorius to ex vitro conditions. Biologia Plantarum. 57(3): 417-424. https://doi.org//10.1007/s10535-013-0328-y Quiala E, Cañal M, Meijón M, Rodríguez R, Chávez M, Valledor L, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell, Tissue and Organ Culture. 109(2): 223-234. https ://doi. org/10.1007/s1124 0-011-0088-3 Ramanayake S, Meemaduma V, Weerawardene T (2006) In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ‘Striata’). Scientia Horticulturae. 110:109–113. https://doi.org/10.1016/j.scienta.2006.06.016 Ray S, Ali M, Mukherjee S, Chatterjee G, Banerjee M (2017) Elimination and molecular identification of endophytic bacterial contaminants during in vitro propagation of Bambusa balcooa. World Journal of Microbiology and Biotechnology. 33(2): 1-9. https://doi.org/10.1007/s11274-016-2196-z Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiologia Plantarum. 120(1): 152-161. https://doi.org/10.1111/j.0031- 9317.2004.0219.x Sen A, Alikamanoglu S (2013) Antioxidant enzyme activities, malondialdehyde, and total phenolic content of PEG-induced hyperhydric leaves in sugar beet tissue culture. In Vitro Cellular & Developmental Biology-Plant. 49(4): 396-404. https://doi.org/10.1007/s11627-013-9511-2 Tewari S, Kaushal R, Banik R, Tewari L, Chaturvedi S (2014) Evaluation of Bamboo species in India: Results from a multi-location trial. Indian Journal of Agroforestry. 16(1): 68-73. Tian J, Cheng Y, Kong X, Liu M, Jiang F, Wu Z (2017) Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro. Protoplasma. 254(1): 379-388. https://doi.org/10.1007/s00709-016-0957-z Tian J, Jiang F, Wu Z (2015) The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitro. Plant Cell, Tissue and Organ Culture (PCTOC). 120(2): 571-584. https://doi.org/10.1007/s11240-014-0623-0 Vidal N, Sánchez C (2019) Use of bioreactor systems in the propagation of forest trees. Engineering in Life Sciences. 19(12): 896-915. https://doi.org/10.1002/elsc.201900041 Venkatachalam P, Kalaiarasi K, Sreeramanan S (2015) Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) Wild: A recalcitrant bamboo species. Journal of Genetic Engineering and Biotechnology. 13(2): 193-200. https://doi.org/10.1016/j.jgeb.2015.09.006 Wu Z, Chen L, Long Y (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoots. In Vitro Cellular & Developmental Biology-Plant. 45(4): 483-490. https://doi.org/10.1007/s11627-008-9180-8 Yeasmin L, Ali M, Gantait S, Chakraborty S (2015) Bamboo: an overview on its genetic diversity and characterization. 3 Biotech, 5(1): 1-11. https://doi.org/10.1007/s13205-014-0201-5 Zobayed S, Afreen F, Kubota C, Kozai T (2000) Water control and survival of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation. Annals of Botany. 86(3): 603-610. https://doi.org/10.1006/anbo.2000.1225 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Research Square Research Square; (2022): Research Square (Aug.);p. 1 - 16