Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada

El cultivo de tomate (Solanum lycopersicum L.), una de las hortalizas más cultivadas en el mundo, se enfrenta a diferentes patógenos del suelo que afectan su morfología, fisiología, bioquímica y regulación genética de las plantas. El hongo fitopatógeno Fusarium oxysporum f. sp. lycopersici (Fol)...

Descripción completa

Detalles Bibliográficos
Autores principales: Carmona, Sandra L., Villarreal Navarrete, Andrea, Diana Burbano, David, Soto Suárez, Mauricio
Formato: article
Lenguaje:Español
Publicado: Universidad de Córdoba 2024
Materias:
Acceso en línea:https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/2457
http://hdl.handle.net/20.500.12324/40148
id RepoAGROSAVIA40148
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Genética vegetal y fitomejoramiento - F30
Tomate
Estrés biótico
Estrés osmótico
Regulación de la expresión genética
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_35769
http://aims.fao.org/aos/agrovoc/c_35750
http://aims.fao.org/aos/agrovoc/c_1ce66974
spellingShingle Genética vegetal y fitomejoramiento - F30
Tomate
Estrés biótico
Estrés osmótico
Regulación de la expresión genética
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_35769
http://aims.fao.org/aos/agrovoc/c_35750
http://aims.fao.org/aos/agrovoc/c_1ce66974
Carmona, Sandra L.
Villarreal Navarrete, Andrea
Diana Burbano, David
Soto Suárez, Mauricio
Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada
description El cultivo de tomate (Solanum lycopersicum L.), una de las hortalizas más cultivadas en el mundo, se enfrenta a diferentes patógenos del suelo que afectan su morfología, fisiología, bioquímica y regulación genética de las plantas. El hongo fitopatógeno Fusarium oxysporum f. sp. lycopersici (Fol) agente causal de la marchitez vascular del tomate causa pérdidas superiores al 60% en este cultivo. En esta revisión se presentan los mecanismos fisiológicos, bioquímicos y moleculares desarrollados en la interacción tomate – Fol. La co-evolución entre plantas y patógenos ha facilitado el desarrollo de mecanismos de defensa en las plantas que les permite protegerse frente a los efectos nocivos de la invasión por parte del patógeno, mientras que los patógenos implementan estrategias para imponerse frente a la resistencia de las plantas. Las consecuencias fisiológicas del ataque por Fol incluyen respuestas al déficit hídrico, regulaciones en la conductancia estomática, cambios en la fotosíntesis, así como alteraciones en los contenidos de clorofila y su fluorescencia. Estos cambios pueden ser explicados, en parte, con base en respuestas oxidativas, producción de metabolitos secundarios y activación de vías de señalización hormonales que hacen parte de una compleja red bioquímica activada tras la infección por el patógeno.
format article
author Carmona, Sandra L.
Villarreal Navarrete, Andrea
Diana Burbano, David
Soto Suárez, Mauricio
author_facet Carmona, Sandra L.
Villarreal Navarrete, Andrea
Diana Burbano, David
Soto Suárez, Mauricio
author_sort Carmona, Sandra L.
title Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada
title_short Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada
title_full Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada
title_fullStr Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada
title_full_unstemmed Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada
title_sort cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por fusarium en tomate: una revisión actualizada
publisher Universidad de Córdoba
publishDate 2024
url https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/2457
http://hdl.handle.net/20.500.12324/40148
work_keys_str_mv AT carmonasandral cambiosfisiologicosymecanismosgeneticosasociadosalamarchitezvascularcausadaporfusariumentomateunarevisionactualizada
AT villarrealnavarreteandrea cambiosfisiologicosymecanismosgeneticosasociadosalamarchitezvascularcausadaporfusariumentomateunarevisionactualizada
AT dianaburbanodavid cambiosfisiologicosymecanismosgeneticosasociadosalamarchitezvascularcausadaporfusariumentomateunarevisionactualizada
AT sotosuarezmauricio cambiosfisiologicosymecanismosgeneticosasociadosalamarchitezvascularcausadaporfusariumentomateunarevisionactualizada
AT carmonasandral physiologicalandgeneticchangesassociatedtovascularwiltoftomatocausedbyfusariumanupdatedreview
AT villarrealnavarreteandrea physiologicalandgeneticchangesassociatedtovascularwiltoftomatocausedbyfusariumanupdatedreview
AT dianaburbanodavid physiologicalandgeneticchangesassociatedtovascularwiltoftomatocausedbyfusariumanupdatedreview
AT sotosuarezmauricio physiologicalandgeneticchangesassociatedtovascularwiltoftomatocausedbyfusariumanupdatedreview
_version_ 1842255502216527872
spelling RepoAGROSAVIA401482024-09-21T03:00:30Z Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada Physiological and genetic changes associated to vascular wilt of tomato caused by Fusarium: an updated review Carmona, Sandra L. Villarreal Navarrete, Andrea Diana Burbano, David Soto Suárez, Mauricio Genética vegetal y fitomejoramiento - F30 Tomate Estrés biótico Estrés osmótico Regulación de la expresión genética Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_7805 http://aims.fao.org/aos/agrovoc/c_35769 http://aims.fao.org/aos/agrovoc/c_35750 http://aims.fao.org/aos/agrovoc/c_1ce66974 El cultivo de tomate (Solanum lycopersicum L.), una de las hortalizas más cultivadas en el mundo, se enfrenta a diferentes patógenos del suelo que afectan su morfología, fisiología, bioquímica y regulación genética de las plantas. El hongo fitopatógeno Fusarium oxysporum f. sp. lycopersici (Fol) agente causal de la marchitez vascular del tomate causa pérdidas superiores al 60% en este cultivo. En esta revisión se presentan los mecanismos fisiológicos, bioquímicos y moleculares desarrollados en la interacción tomate – Fol. La co-evolución entre plantas y patógenos ha facilitado el desarrollo de mecanismos de defensa en las plantas que les permite protegerse frente a los efectos nocivos de la invasión por parte del patógeno, mientras que los patógenos implementan estrategias para imponerse frente a la resistencia de las plantas. Las consecuencias fisiológicas del ataque por Fol incluyen respuestas al déficit hídrico, regulaciones en la conductancia estomática, cambios en la fotosíntesis, así como alteraciones en los contenidos de clorofila y su fluorescencia. Estos cambios pueden ser explicados, en parte, con base en respuestas oxidativas, producción de metabolitos secundarios y activación de vías de señalización hormonales que hacen parte de una compleja red bioquímica activada tras la infección por el patógeno. Tomate-Solanum lycopersicum 2024-09-20T14:24:04Z 2024-09-20T14:24:04Z 2020-08-10 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/2457 2389-9182 http://hdl.handle.net/20.500.12324/40148 10.21897/rta.v25i2.2457 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Temas Agrarios 25 2 166 189 Abbashar, A. M. 2003. Investigations On Fusarium oxysporum f. sp. lycopersici The Casual Agent Of Tomato Wilt (Lycopersicon esculentum Mill) (Issue March). University of Khartoum. Ádám, A., Nagy, Z., Kátay, G., Mergenthaler, E. and Viczián, O. 2018. Signals of Systemic Immunity in Plants: Progress and Open Questions. International Journal of Molecular Sciences, 19(4), 1146. https://doi.org/10.3390/ijms19041146 Agronet. 2020. Base Agrícola EVA 2007-2019 (P)_12_02_2020. Akhter, A., Hage-Ahmed, K., Soja, G. and Steinkellner, S. 2015. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Science, 6, 529. https://doi.org/10.3389/fpls.2015.00529 Alsamir, M., Mahmood, T., Ahmad, N. and Trethowan, R. 2017. Distribution of organic metabolites after Fusarium wilt incidence in tomato (Solanum esculentum L.). Australian Journal of Crop Science, 11(9): 1123–1129. https://doi.org/10.21475/ajcs.17.11.09.pne536 Andersen, E., Ali, S., Byamukama, E., Yen, Y. and Nepal, M. 2018. Disease Resistance Mechanisms in Plants. Genes, 9(7): 339. https://doi.org/10.3390/genes9070339 Arbona, V., Argamasilla, R. and Gómez-cadenas, A. 2010. Common and divergent physiological , hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. Journal of Plant Physiology, 167(16):1342–1350. https://doi.org/10.1016/j.jplph.2010.05.012 Ashraf, M. and Foolad, M. R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006 Atkinson, N. and Urwin, P. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10): 3523–3544. https://doi.org/10.1093/jxb/err313 Azcón-Bieto, J. and Talón, M. 2008. Fundamentos de fisiología vegetal. In McGrawHill. https://doi.org/10.1017/CBO9781107415324.004 Baker, N. R. 2008. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1): 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 Basco, M. J., Bisen, K., Keswani, C. y Singh, H. B. 2017. Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere, 8(3): 467–483. https://doi.org/10.5943/mycosphere/8/3/8 Beckers, G. J. and Conrath, U. 2007. Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10(4): 425–431. https://doi.org/10.1016/J.PBI.2007.06.002 Ben Rejeb, K., Abdelly, C. and Savouré, A. 2014. How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80: 278–284. https://doi.org/10.1016/j.plaphy.2014.04.007 Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W. and Roitsch, T. 2004. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4): 419-428. https://doi.org/10.1111/j.1399-3054.2004.00433.x Boix-Ruíz, A., Gálvez-Patón, L., de Cara-García, M., Palmero-Llamas, D., Camacho-Ferre, F. and Tello-Marquina, J. C. 2015. Comparison of analytical techniques used to identify tomato-pathogenic strains of Fusarium oxysporum. Phytoparasitica, 43(4): 471-483. https://doi.org/10.1007/s12600-014-0444-z Boller, T. and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346 Brodersen, C. R. and McElrone, A. J. 2013. Maintenance of xylem Network Transport Capacity: A Review of Embolism Repair in Vascular Plants. Frontiers in Plant Science, 4, 108. https://doi.org/10.3389/fpls.2013.00108 Carvalhais, L. C., Dennis, P. G., Badri, D. V., Tyson, G. W., Vivanco, J. M. and Schenk, P. M. 2013. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE, 8(2): 1–5. https://doi.org/10.1371/journal.pone.0056457 Catanzariti, A. M., Do, H. T. T., Bru, P., de Sain, M., Thatcher, L. F., Rep, M. and Jones, D. A. 2017. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. Plant Journal, 89(6): 1195–1209. https://doi.org/10.1111/tpj.13458 Chaudhary, R. and Atamian, H. 2017. Resistance-Gene-Mediated Defense Responses against Biotic Stresses in the Crop Model Plant Tomato. Journal of Plant Pathology & Microbiology, 8(4): 1–11. https://doi.org/10.4172/2157-7471.1000404 Chaves, M. M., Flexas, J. and Pinheiro, C. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551–560. https://doi.org/10.1093/aob/mcn125 Chekali, S., Gargouri, S., Paulitz, T., Nicol, J. M., Rezgui, M. and Nasraoui, B. 2011. Effects of Fusarium culmorum and water stress on durum wheat in Tunisia. Crop Protection, 30(6), 718–725. https://doi.org/10.1016/j.cropro.2011.01.007 Choudhary, D. K. and Varma, A. 2016. Microbial-mediated Induced Systemic Resistance in Plants (D. K. Choudhary & A. Varma (Eds.); 1st ed.). Springer India. Clayton, E. E. 1923. The Relation of Temperature to the Fusarium Wilt of the Tomato. American Journal of Botany, 10(2): 71. https://doi.org/10.2307/2435575 Cole, S. J., Yoon, A. J., Faull, K. F. and Diener, A. C. 2014. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates. Molecular Plant Pathology, 15(6): 589–600. https://doi.org/10.1111/mpp.12117 Constantin, M. E., de Lamo, F. J., Vlieger, B. V., Rep, M. and Takken, F. L. W. 2019. Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. Frontiers in Plant Science, 10, 1–14. https://doi.org/10.3389/fpls.2019.00979 Couto, D. and Zipfel, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16(9): 537–552. https://doi.org/10.1038/nri.2016.77 Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4): 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x Dehgahi, R., Subramaniam, S., Zakaria, L., Joniyas, A., Firouzjahi, F. B., Haghnama, K. and Razinataj, M. 2015. Review of Research on Fungal Pathogen Attack and Plant Defense Mechanism against Pathogen. International Journal of Scientific Research in Agricultural Sciences, 2(8): 197–208. https://doi.org/10.12983/ijsras-2015-p0197-0208 Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J. and Roncero, M. I. G. 2003. Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5): 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.x Di, X., Gomila, J. O. and Takken, F. L. W. 2017. Involvement of salicylic acid , ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular Plant Pathology, 18(7): 1024–1035. Dmitriev, a P. 2003. Signal Molecules for Plant Defense Responses to Biotic Stress. Text, 50(3): 417-425. Doares, S. H., Syrovetst, T., Weilert, E. W. and Ryan, C. A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. 92, 4095-4098. http://www.pnas.org/content/pnas/92/10/4095.full.pdf Dong, X., Xiong, Y., Ling, N., Shen, Q. and Guo, S. 2014. Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World Journal of Microbiology and Biotechnology, 30(4): 1399–1408. https://doi.org/10.1007/s11274-013-1564-1 Duniway, J. 1971. Water relations of Fusarium wilt. Physiology Plant Pathology, 1, 539–548. FAO. 2020. Faostat: Production quantities of Tomatoes by country. Fraire-Velázquez, S., Rodríguez-Guerra, R. and Sánchez-Calderón, L. 2011. Abiotic and Biotic Stress Response Crosstalk in Plants. In A. Shank (Ed.), Abiotic Stress Response in Plants - Physiological, Biochemical and Genetic Perspectives (InTech Eur, p. 346). Francia, D., Demaria, D., Calderini, O., Ferraris, L., Valentino, D., Arcioni, S., Tamietti, G. and Cardinale, F. 2007. Wounding induces resistance to pathogens with different lifestyles in tomato: Role of ethylene in cross-protection. Plant, Cell and Environment, 30(11): 1357–1365. https://doi.org/10.1111/j.1365-3040.2007.01709.x Freitas De Campos, M., Carvalho, K. De, Suano, F., Souza, D. and Jamil, C. 2011. Drought tolerance and antioxidant enzymatic activity in transgenic ‘ Swingle ’citrumelo plants over-accumulating proline. Environmental and Experimental Botany, 72, 242–250. https://doi.org/10.1016/j.envexpbot.2011.03.009 García-Enciso, E. L., Benavides-Mendoza, A., Flores-López, M. L., Robledo-Olivo, A., Juárez-Maldonado, A. and González-Morales, S. 2018. A Molecular Vision of the Interaction of Tomato Plants and Fusarium oxysporum f. sp. lycopersic. In Fusarium - Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers. InTech. https://doi.org/10.5772/intechopen.72127 Goltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H. and Allakhverdiev, S. I. 2016. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869–893. https://doi.org/10.1134/S1021443716050058 Gonzalez-Cendales, Y., Catanzariti, A.-M., Baker, B., Mcgrath, D. J. and Jones, D. A. 2016. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Molecular Plant Pathology, 17(3): 448–463. https://doi.org/10.1111/mpp.12294 Henry, G., Thonart, P. and Ongena, M. 2012. PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnologie, Agronomie, Société et …, 16(2), 12. Houterman, P. M., Cornelissen, B. J. C. and Rep, M. 2008. Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathogens, 4(5):1–6. https://doi.org/10.1371/journal.ppat.1000061 Huot, B., Yao, J., Montgomery, B. L. and He, S. Y. 2014. Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7(8): 1267–1287. https://doi.org/10.1093/mp/ssu049 Inami, K., Yoshioka-Akiyama, C., Morita, Y., Yamasaki, M., Teraoka, T. and Arie, T. 2012. A Genetic Mechanism for Emergence of Races in Fusarium oxysporum f. sp. lycopersici: Inactivation of Avirulence Gene AVR1 by Transposon Insertion. PLoS ONE, 7(8), e44101. https://doi.org/10.1371/journal.pone.0044101 Ito, S. ichi, Ihara, T., Tamura, H., Tanaka, S., Ikeda, T., Kajihara, H., Dissanayake, C., Abdel-Motaal, F. F. and El-Sayed, M. A. 2007. α-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Letters, 581(17): 3217–3222. https://doi.org/10.1016/j.febslet.2007.06.010 Jayamohan, N. S., Patil, S. V. and Kumudini, B. S. 2018. Reactive oxygen species (ROS) and antioxidative enzyme status in Solanum lycopersicum on priming with fluorescent Pseudomonas spp. against Fusarium oxysporum. Biologia, 73(11): 1073–1082. https://doi.org/10.2478/s11756-018-0125-3 Jiao, J., Zhou, B., Zhu, X., Gao, Z. and Liang, Y. 2013. Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells. Planta, 238(4): 727–737. https://doi.org/10.1007/s00425-013-1928-7 Jogaiah, S., Abdelrahman, M., Tran, L. S. P. and Ito, S. I. 2018. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Molecular Plant Pathology, 19(4): 870–882. https://doi.org/10.1111/mpp.12571 Jones, D. and Takemoto, D. 2004. Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology, 16(1): 48–62. https://doi.org/10.1016/j.coi.2003.11.016 Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature Reviews, 444, 323–329. https://doi.org/10.1038/nature05286 Jones, J. D. G., Vance, R. E. and Dangl, J. L. 2016. Intracellular innate immune surveillance devices in plants and animals. In Science 354 (6316): 1-8. American Association for the Advancement of Science. https://doi.org/10.1126/science.aaf6395 Kavroulakis, N., Doupis, G., Papadakis, I. E., Ehaliotis, C. and Papadopoulou, K. K. 2018. Tolerance of tomato plants to water stress is improved by the root endophyte Fusarium solani FsK. Rhizosphere, 6, 77–85. https://doi.org/10.1016/j.rhisph.2018.04.003 Kavroulakis, N., Ntougias, S., Zervakis, G. I., Ehaliotis, C., Haralampidis, K. and Papadopoulou, K. K. 2007. Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany, 58(14): 3853–3864. https://doi.org/10.1093/jxb/erm230 Kiirika, L. M., Stahl, F. and Wydra, K. 2013. Phenotypic and molecular characterization of resistance induction by single and combined application of chitosan and silicon in tomato against Ralstonia solanacearum. Physiological and Molecular Plant Pathology, 81, 1–12. https://doi.org/10.1016/j.pmpp.2012.11.002 Król, P., Igielski, R., Pollmann, S. and Kepczyńska, E. 2015. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. Journal of Plant Physiology, 179, 122–132. https://doi.org/10.1016/j.jplph.2015.01.018 Kumar, A. and Verma, J. P. 2018. Does plant Microbe interaction confer stress tolerance in plants: A review? Microbiological Research, 207, 41–52. https://doi.org/10.1016/j.micres.2017.11.004 Latowski, D., Surówka, E. and Strzałka, K. 2010. Regulatory Role of Components of Ascorbate Glutathione Pathway in Plant Stress Tolerance. In N. A. Anjum, S. Umar, & M.-T. Chan (Eds.), Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. 1-443. Springer Netherlands. https://doi.org/10.1007/978-90-481-9404-9 Liu, L., Sonbol, F. M., Huot, B., Gu, Y., Withers, J., Mwimba, M., Yao, J., He, S. Y. and Dong, X. 2016. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms13099 López-Díaz, C., Rahjoo, V., Sulyok, M., Ghionna, V., Martín-Vicente, A., Capilla, J., Di Pietro, A. and López-Berges, M. S. 2017. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12536 Lorenzini, G., Guidi, L., Nali, C., Ciompi, S. and Soldatini, G. F. 1997. Photosynthetic response of tomato plants to vascular wilt diseases. Plant Science, 124(2): 143–152. https://doi.org/10.1016/S0168-9452(97)04600-1 Lund, S. T., Stall, R. E. and Klee, H. J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell, 10(3): 371–382. https://doi.org/10.1105/tpc.10.3.371 Maina, F. M., Hauschild, R. and Sikora, R. 2008. Protection of tomato plants against fusaric acid by resistance induction. In ©Journal of Applied Biosciences.1 (1). www.biosciences.elewa.org Mandal, S., Mallick, N. and Mitra, A. 2009. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 47(7):642–649. https://doi.org/10.1016/j.plaphy.2009.03.001 Manokaran, R. and Jambhulkar, P. P. 2016. Study of induced systemic resistance in tomato against Fusarium oxysporum f. sp lycopersici causing wilt of tomato Study of induced systemic resistance in tomato against Fusarium oxysporum f. sp lycopersici causing wilt of tomato. 69, 539–542. Maqsood, A., Wu, H., Kamran, M., Altaf, H., Mustafa, A., Ahmar, S., Hong, N. T. T., Tariq, K., He, Q. and Chen, J. T. 2020. Variations in growth, physiology, and antioxidative defense responses of two tomato (Solanum lycopersicum L.) cultivars after co-infection of Fusarium oxysporum and Meloidogyne incognita. Agronomy, 10(2):1-25. https://doi.org/10.3390/agronomy10020159 Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V. and Hoyos-Carvajal, L. M. 2020. Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1): 88–99. https://doi.org/10.1016/j.sjbs.2019.05.007 Martínez-Medina, A., Fernández, I., Sánchez-Guzmán, M. J., Jung, S. C., Pascual, J. A. and Pozo, M. J. 2013. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 4, 1–12. https://doi.org/10.3389/fpls.2013.00206 Maxwell, K. and Johnson, G. N. 2000. Chlorophyll a fl uorescence - a practical guide. Journal of Experimental Botany, 51(345): 659–668. https://doi.org/10.1093/jxb/51.345.659 McGovern, R. J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection, 73, 78–92. https://doi.org/10.1016/j.cropro.2015.02.021 Melgarejo, L. M., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S. and Pérez, W. 2010. Experimentos en Fisiología Vegetal (U. N. de Colombia (Ed.); First edit). Universidad Nacional de Colombia. Mes, J. J., Van Doorn, A. A., Wijbrandi, J., Simons, G., Cornelissen, B. J. C. and Haring, M. A. 2000. Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant Journal, 23(2), 183–193. https://doi.org/10.1046/j.1365-313X.2000.00765.x Michielse, C. B. and Rep, M. 2009. Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3): 311-324. https://doi.org/10.1111/j.1364-3703.2009.00538.x Nair, A., Kolet, S. P., Thulasiram, H. V. and Bhargava, S. 2015. Role of methyl jasmonate in the expression of mycorrhizal induced resistance against Fusarium oxysporum in tomato plants. Physiological and Molecular Plant Pathology, 92, 139–145. https://doi.org/10.1016/j.pmpp.2015.10.002 Nankishore, A. and Farrell, A. D. 2016. The response of contrasting tomato genotypes to combined heat and drought stress. Journal of Plant Physiology, 202, 75–82. https://doi.org/10.1016/j.jplph.2016.07.006 Narasimhamurthy, K., Soumya, K., Udayashankar, A. C., Srinivas, C. and Niranjana, S. R. 2019. Elicitation of innate immunity in tomato by salicylic acid and Amomum nilgiricum against Ralstonia solanacearum. Biocatalysis and Agricultural Biotechnology, 22. 1-7 https://doi.org/10.1016/j.bcab.2019.101414 Nobori, T., Mine, A. and Tsuda, K. 2018. Molecular networks in plant-pathogen holobiont. FEBS Letters. https://doi.org/10.1002/1873-3468.13071 Nogués, S., Cotxarrera, L., Alegre, L. and Trillas, M. I. 2002. Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytologist, 154(2): 461–470. https://doi.org/10.1046/j.1469-8137.2002.00379.x Periyannan, S., Milne, R. J., Figueroa, M., Lagudah, E. S. and Dodds, P. N. 2017. An overview of genetic rust resistance: From broad to specific mechanisms. In PLoS Pathogens 13(7). Public Library of Science. https://doi.org/10.1371/journal.ppat.1006380 Pieterse, C. M. J., Leon-Reyes, A., van Der Ent, S. and van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5): 308–316. https://doi.org/10.1038/nchembio.164 Pieterse, C. M. J., van der Does, D., Zamioudis, C., Leon-Reyes, A. and Van Wees, S. C. M. 2012. Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 28(1): 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055 Pinheiro, C. and Chaves, M. M. 2011. Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62(3): 869–882. https://doi.org/10.1093/jxb/erq340 Pitzschke, A., Schikora, A. and Hirt, H. 2009. MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 12(4): 421–426. https://doi.org/10.1016/j.pbi.2009.06.008 Pshibytko, N. L., Zenevich, L. A. and Kabashnikova, L. F. 2006. Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russian Journal of Plant Physiology, 53(1): 25–31. Pusztahelyi, T. 2018. Chitin and chitin-related compounds in plant–fungal interactions. Mycology, 9(3): 189–201. https://doi.org/10.1080/21501203.2018.1473299 Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K. and Gong, Z. 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9): 805–826. https://doi.org/10.1111/jipb.12654 Ramírez-Gómez, M. and Rodríguez, A. 2012. Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión. Revista Colombiana de Biotecnología, 14(1): 271–284. Rep, M., van Der Does, H. C., Meijer, M., Van Wijk, R., Houterman, P. M., Dekker, H. L., De Koster, C. G. and Cornelissen, B. J. C. 2004. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 53(5): 1373-1383. https://doi.org/10.1111/j.1365-2958.2004.04177.x Saharan, V. and Pal, A. 2016. Chitosan Based Nanomaterials in Plant Growth and Protection. Springer India. Samadi, L. and Behboodi, B. 2006. Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. Planta, 225(1), 223–234. https://doi.org/10.1007/s00425-006-0345-6 Shah, J. 2009. Plants under attack: systemic signals in defence. Current Opinion in Plant Biology, 12(4): 459–464. https://doi.org/10.1016/j.pbi.2009.05.011 Sharif, R., Mujtaba, M., Rahman, M. U., Shalmani, A., Ahmad, H., Anwar, T., Tianchan, D. and Wang, X. 2018. The Multifunctional Role of Chitosan in Horticultural crops: a review. Molecules, 23(872): 1–20. https://doi.org/10.3390/molecules23040872 Singh, P., Singh, J., Ray, S., Rajput, R. S., Vaishnav, A., Singh, R. K. and Singh, H. B. 2020. Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt Prachi. Microbiological Research, 237. https://doi.org/10.1016/j.micres.2020.126482 Singh, V. K., Singh, H. B. and Upadhyay, R. S. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemistry, 118, 320–332. https://doi.org/10.1016/j.plaphy.2017.06.028 Singh, V. K. and Upadhyay, R. S. 2014. Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. Botanical Studies, 55(1): 66. https://doi.org/10.1186/s40529-014-0066-2 Soliman, M. H. and El-Mohamedy, R. S. R. 2017. Induction of defense-related physiological and antioxidant enzyme response against powdery mildew disease in okra (Abelmoschus esculentus L.) plant by using chitosan and potassium salts. Mycobiology. https://doi.org/10.5941/MYCO.2017.45.4.409 Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B. P., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd Allah, E. F. and Chandra Nayaka, S. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity A review. Saudi Journal of Biological Sciences, 26(7): 1315–1324. https://doi.org/10.1016/j.sjbs.2019.06.002 Stahl, E., biology, J. B.-C. opinion in plant, and 2000. Plant pathogen arms races at the molecular level. Plant Bioloy. 3(4):299-304. Doi: 10.1016/s1369-5266(00)00083-2 Takken, F. and Rep, M. 2010. The arms race between tomato and Fusarium oxysporum. In Molecular Plant Pathology 11(2):309–314. https://doi.org/10.1111/j.1364-3703.2009.00605.x Thaler, J. S., Humphrey, P. T. and Whiteman, N. K. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science, 17(5):260–270. https://doi.org/10.1016/j.tplants.2012.02.010 Tripathy, B. C. hara. and Oelmüller, R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior, 7(12): 1621–1633. https://doi.org/10.4161/psb.22455 Van der Does, H. C., Constantin, M. ., Houterman, P. M., Takken, F. L. W., Cornelissen, B. J. C., Haring, M. A., van den Burg, H. A. and Rep, M. 2018. Fusarium oxysporum colonizes the stem of resistant tomato plants , the extent varying with the R-gene present. European Journal of Plant Pathology, 154. 55-65. Van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology, 44(1), 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425 Vidhyasekaran, P. 2016. Switching on Plant Innate Immunity Signaling Systems - Bioengineering and Molecular Manipulation of PAMP-PIMP-PRR Signaling Complex (F. Baluška & J. Vivanco (Eds.)). Springer International Publishing AG Switzerland. https://doi.org/10.1007/978-3-319-26118-8 Villa-Martínez, A., Morales-morales, Hugo Armando., Pérez-Leal, R. y Soto-parra, Juan Manuel., Basurto-Sotelo, M. and E. M.-E. 2015. Situación actual en el control de Fusarium spp . y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronomica, 64(2): 194-205. https://doi.org/http://dx.doi.org/10.15446/acag.v64n2.43358 Villarreal, A. del P. 2013. Evaluación fisiológica de plantas de uchuva (Physalis peruviana L.), en la respuesta al estrés por anegamiento e infección de Fusarium oxysporum. 141. Wagner, A., Michalek, W. and Jamiolkowska, A. 2006. Chlorophyll fluorescence measurements as indicators of fusariosis severity in tomato plants. Agronomy Research, 4(Speciel Issue), 461–464. Walters, D. R. 2015. Physiological responses of plants to attack. In Crop & Soil Systems Research Group (Wiley Blac),1. 248 Walters, M. 2015. The plant innate immune system. Journal of Endocytobiosis and Cell Research, 26, 8–12. Wang, F., Wu, N., Zhang, L., Ahammed, G. J., Chen, X., Xiang, X., Zhou, J., Xia, X., Shi, K., Yu, J., Foyer, C. H. and Zhou, Y. 2018. Light Signaling-dependent Regulation of Photoinhibition and Photoprotection in Tomato. Plant Physiology, 176, 1311–1326. https://doi.org/10.1104/pp.17.01143 Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J. and Hein, I. 2014. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5, 655. https://doi.org/10.3389/fpls.2014.00655 Yadeta, K. A. and J. Thomma, B. P. H. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science, 4, 1–12. https://doi.org/10.3389/fpls.2013.00097 Yang, F., Wang, Y., Wang, J., Deng, W., Liao, L. and Li, M. 2011. Different eco-physiological responses between male and female Populus deltoides clones to waterlogging stress. Forest Ecology and Management, 262(11): 1963–1971. https://doi.org/10.1016/j.foreco.2011.08.039 Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H. and Bahadar, K. 2018. Role of secondary metabolites in plant defense against pathogens. In Microbial Pathogenesis 124, 198–202. Academic Press. https://doi.org/10.1016/j.micpath.2018.08.034 Zehra, A., Meena, M., Dubey, M. K., Aamir, M. and Upadhyay, R. S. 2017. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Botanical Studies, 58(1). https://doi.org/10.1186/s40529-017-0198-2 Zhang, H., Zhang, Q., Zhai, H., Gao, S., Yang, L., Wang, Z., Xu, Y., Huo, J., Ren, Z., Zhao, N., Wang, X., Li, J., Liu, Q. and He, S. 2020. IbBBX24 Promotes the Jasmonic Acid Pathway and Enhances Fusarium Wilt Resistance in Sweet Potato. The Plant Cell, tpc.00641.2019. https://doi.org/10.1105/tpc.19.00641 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Universidad de Córdoba Temas Agrarios; vol. 25, Núm. 2 (2020): Temas Agrarios (Dec.);p. 166–189.