High-throughput Phenotyping of Maize Roots Using Digital Image Analysis

Recent research on maize root architecture has made significant progress, but further research is needed to optimize methods for efficient and accurate acquisition of root architecture data. This study aimed to assess the effectiveness of digital imaging for root phenotyping of Zea mays L. Field e...

Full description

Bibliographic Details
Main Authors: Coronado Aleans, Verónica, Barrera Sánchez, Carlos F., Guzmán, Manuel
Format: Artículo
Language:Español
Published: Corporación colombiana de investigación agropecuaria - AGROSAVIA 2024
Subjects:
Online Access:http://hdl.handle.net/20.500.12324/39197
https://doi.org/10.21930/rcta.vol25_num1_art:3312
id RepoAGROSAVIA39197
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Genética vegetal y fitomejoramiento - F30
Zea mays
Mejoramiento genético
Características agronómicas
Transitorios
http://aims.fao.org/aos/agrovoc/c_8504
http://aims.fao.org/aos/agrovoc/c_11119
http://aims.fao.org/aos/agrovoc/c_210
spellingShingle Genética vegetal y fitomejoramiento - F30
Zea mays
Mejoramiento genético
Características agronómicas
Transitorios
http://aims.fao.org/aos/agrovoc/c_8504
http://aims.fao.org/aos/agrovoc/c_11119
http://aims.fao.org/aos/agrovoc/c_210
Coronado Aleans, Verónica
Barrera Sánchez, Carlos F.
Guzmán, Manuel
High-throughput Phenotyping of Maize Roots Using Digital Image Analysis
description Recent research on maize root architecture has made significant progress, but further research is needed to optimize methods for efficient and accurate acquisition of root architecture data. This study aimed to assess the effectiveness of digital imaging for root phenotyping of Zea mays L. Field experiments were carried out at two locations in the province of Antioquia, Colombia, in 2019 and 2020 to analyze root architecture variables of 12 genotypes of maize. Two methodologies were used: manual phenotyping and digital image analysis. Pearson’s correlation coefficients among variables were estimated. Principal Component Analysis (PCA) was used to summarize and uncover clustering patterns in the multivariate data set. The results indicated correlations between diameter (r = 0.94) and manually measured root diameter. The manually measured right and left root angles correlated with image-derived root angle at r = 0.92 and 0.88, respectively, and root length at r = 0.62. The PCA highlighted that the digital method explained the highest proportion of variation in root areas and diameters, while the manual method dominated in root angle variables. These results corroborate a feasible method to optimize root architecture phenotyping for research questions. This protocol can be adopted under the automatic analysis with REST software for acquiring images of variables associated with roots’ angle, length, and diameter.
format Artículo
author Coronado Aleans, Verónica
Barrera Sánchez, Carlos F.
Guzmán, Manuel
author_facet Coronado Aleans, Verónica
Barrera Sánchez, Carlos F.
Guzmán, Manuel
author_sort Coronado Aleans, Verónica
title High-throughput Phenotyping of Maize Roots Using Digital Image Analysis
title_short High-throughput Phenotyping of Maize Roots Using Digital Image Analysis
title_full High-throughput Phenotyping of Maize Roots Using Digital Image Analysis
title_fullStr High-throughput Phenotyping of Maize Roots Using Digital Image Analysis
title_full_unstemmed High-throughput Phenotyping of Maize Roots Using Digital Image Analysis
title_sort high-throughput phenotyping of maize roots using digital image analysis
publisher Corporación colombiana de investigación agropecuaria - AGROSAVIA
publishDate 2024
url http://hdl.handle.net/20.500.12324/39197
https://doi.org/10.21930/rcta.vol25_num1_art:3312
work_keys_str_mv AT coronadoaleansveronica highthroughputphenotypingofmaizerootsusingdigitalimageanalysis
AT barrerasanchezcarlosf highthroughputphenotypingofmaizerootsusingdigitalimageanalysis
AT guzmanmanuel highthroughputphenotypingofmaizerootsusingdigitalimageanalysis
AT coronadoaleansveronica fenotipadodealtorendimientoderaicesdemaizmedianteanalisisdeimagenesdigitales
AT barrerasanchezcarlosf fenotipadodealtorendimientoderaicesdemaizmedianteanalisisdeimagenesdigitales
AT guzmanmanuel fenotipadodealtorendimientoderaicesdemaizmedianteanalisisdeimagenesdigitales
_version_ 1808108007414824960
spelling RepoAGROSAVIA391972024-04-25T03:03:02Z High-throughput Phenotyping of Maize Roots Using Digital Image Analysis Fenotipado de alto rendimiento de raíces de maíz mediante análisis de imágenes digitales Coronado Aleans, Verónica Barrera Sánchez, Carlos F. Guzmán, Manuel Genética vegetal y fitomejoramiento - F30 Zea mays Mejoramiento genético Características agronómicas Transitorios http://aims.fao.org/aos/agrovoc/c_8504 http://aims.fao.org/aos/agrovoc/c_11119 http://aims.fao.org/aos/agrovoc/c_210 Recent research on maize root architecture has made significant progress, but further research is needed to optimize methods for efficient and accurate acquisition of root architecture data. This study aimed to assess the effectiveness of digital imaging for root phenotyping of Zea mays L. Field experiments were carried out at two locations in the province of Antioquia, Colombia, in 2019 and 2020 to analyze root architecture variables of 12 genotypes of maize. Two methodologies were used: manual phenotyping and digital image analysis. Pearson’s correlation coefficients among variables were estimated. Principal Component Analysis (PCA) was used to summarize and uncover clustering patterns in the multivariate data set. The results indicated correlations between diameter (r = 0.94) and manually measured root diameter. The manually measured right and left root angles correlated with image-derived root angle at r = 0.92 and 0.88, respectively, and root length at r = 0.62. The PCA highlighted that the digital method explained the highest proportion of variation in root areas and diameters, while the manual method dominated in root angle variables. These results corroborate a feasible method to optimize root architecture phenotyping for research questions. This protocol can be adopted under the automatic analysis with REST software for acquiring images of variables associated with roots’ angle, length, and diameter. Maíz-Zea mays 2024-04-24T15:42:19Z 2024-04-24T15:42:19Z 2024 2024 Artículo científico http://purl.org/coar/version/c_970fb48d4fbd8a85 2500-5308 2500-5308 http://hdl.handle.net/20.500.12324/39197 https://doi.org/10.21930/rcta.vol25_num1_art:3312 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Ciencia y Tecnología Agropecuaria 25 1 1 16 Abramoff, M., Magalhães, P., & Ram, S. J. (2004). Image Processing with Image J. Biophotonics International, 11, 36-42. https://dspace.library.uu.nl/handle/1874/204900 Band, R., Fozard, A., Godin, C., Jensen, E., Pridmore, T., Bennett, J., & King, R. (2012) Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell, 24, 3892-3906. https://doi.org/10.1105/tpc.112.101550 Bucksch, A., Burridge, J., York, L. M., Das, A., Nord, E., Weitz, J. S., & Lynch, J. P. (2014). Image-based high-throughput field phenotyping of crop roots. Plant Physiology, 166(2), 470-486. https://doi.org/10.1104/pp.114.243519 Burridge, J., Jochua, C. N., Bucksch, A., & Lynch, J. P. (2016). Legume shovelomics: highthroughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops Research, 192, 21- 32. https://doi.org/10.1016/j.fcr.2016.04.008 Colombi, T., Kirchgessner, N., Le Marié, C. A., York, L. M., Lynch, J. P., & Hund, A. (2015). Next generation shovelomics: set up a tent and REST. Plant Soil, 388, 1-20. https://doi.org/10.1007/s11104-015-2379-7 Das, A., Schneider, H., Burridge., Burridge, J., Martinez, A., Wojciechowski, T., Topp, C., Lynch, J., Weitz, J., & Bucksch, A. (2015). Digital imaging of root traits (DIRT): a highthroughput computing and collaboration platform for field-based root phenomics. Plant Methods, 11, 51. https://doi.org/10.1186/s13007-015-0093-3 Den, H. G., Van I. G., Beeckman, T., & De, S. I. (2010). The roots of a new green revolution. Trends in Plant Science, 15(11), 600-607. https://doi.org/10.1016/j.tplants.2010.08.009 DoVale, J. C., & Fritsche-Neto, R. (2013). Genetic control of traits associated with phosphorus use efficiency in maize by REML/BLUP. Revista Ciência Agronômica, 443, 554-563. https://doi.org/10.1590/S1806-66902013000300018 Guo, C., Liu, L., Zhang, K., Sun, H., & Zhang, Y. (2022). High-throughput estimation of plant height and above-ground biomass of cotton using digital image analysis and Canopeo. Technology in Agronomy, 2-4. https://doi.org/10.48130/TIA-2022-0004 Hirel, B., Le, Gouis, J., Ney, B., & Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 58, 2369-2387. https://doi.org/10.1093/jxb/erm097 Hochholdinger, T. R., & Tuberosa, R. (2009) Genetic and genomic dissection of maize root development and architecture. Current opinion in Plant Biology, 12(2), 172-177. https://doi.org/10.1016/j.pbi.2008.12.002 Kipp, S., Mistele, B., Baresel, P., & Schmidhalter, U. (2014). High-throughput phenotyping early plant vigour of winter wheat. European Journal of Agronomy. 52, 271-278. https://doi.org/10.1016/j.eja.2013.08.009 Kuijken, P., Van Eeuwijk, A., Marcelis, M., & Bouwmeester, J. (2015). Root phenotyping: from component trait in the lab to breeding. Journal of Experimental Botany, 66(18), 5389k5401. https://doi.org/10.1093/jxb/erv239 Le Marié, C. A., York, L. M., Strigens, A., Heinz, C., Giuliani, S., Lynch, J., & Hund, A. (2019). Shovelomics root traits assessed on the EURoot maize panel are highly heritable across environments but show low genotype-by-nitrogen interaction. Euphytica, 215(10), 173. https://doi.org/10.1007/s10681-019-2472-8 Liu, J., & Pattey, E. (2010). Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agricultural and Forest Meteorology, 150, 1485-1490. https://doi.org/10.1016/j.agrformet.2010.08.002 Lynch, J. P. (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology, 156(3), 1041-1049. https://doi.org/10.1104/pp.111.175414 Lynch, J. P., & Brown, K. M. (2012). New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1595), 1598- 1604. https://doi.org/10.1098/rstb.2011.0243 Mir, R., Reynolds, M., Pinto, F., Khan, M. A., & Bhat, M. A. (2019). High-throughput phenotyping for crop improvement in the genomics era. Plant Science, 282, 60-72. https://doi.org/10.1016/j.plantsci.2019.01.007 Pound, M. P., French, A. P., Wells, D. M., Bennett, M. J., & Pridmore, T. P. (2012). CellSeT: novel software to extract and analyze structured networks of plant cells from confocal images. The Plant Cell, 24(4), 1353-1361. https://doi.org/10.1105/tpc.112.096289 Rich, S. M., & Watt, M. (2013). Soil conditions and cereal RSA: review and considerations for linking Darwin and Weaver. Journal of experimental botany, 64(5), 1193-1208. https://doi.org/10.1093/jxb/ert043 Seethepalli, L. M., York, H., Almtarfi, F. B., Fritschi, & Zare, A. (2018). A novel multiperspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties. BioRxiv, 309161. https://doi.org/10.1101/309161 Shi, L., Shi, T., Broadley, M. R., White, P. J., Long, Y., Meng, J., Xu, F., & Hammond, J. P. (2013). High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Annals of Botany, 112(2), 381-38. https://doi.org/10.1093/aob/mcs245 York, L. M., & Lynch, J. P. (2015). Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. Journal of Experimental Botany, 66(18), 5493-5505. https://doi.org/10.1093/jxb/erv241 York, L. M., Nord, E. A. Lynch, J. P. (2013). Integration of root phenes for soil resource acquisition. Frontiers in Plant Science, 4, 355. https://doi.org/10.3389/fpls.2013.00355 Zhan, A., & Lynch, J. P. (2015). Reduced frequency of lateral root branching improves N capture from low-N soils in maize. Journal of Experimental Botany, 66(7), 2055-2065. https://doi.org/10.1093/jxb/erv007 Zhang, C., Postma, J. A., York, L. M., Lynch, J. P. (2014). Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture, Annals of Botany, 114(8), 1719-1733. https://doi.org/10.1093/aob/mcu191 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Corporación colombiana de investigación agropecuaria - AGROSAVIA Mosquera (Colombia) Ciencia y Tecnología Agropecuaria; Vol 25, Núm.1 (2023): Ciencia y Tecnología Agropecuaria; p. 1-16.