Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water
Magnetically treated water (MTW) has been used to promote biomass yield in different crops. Tabasco pepper is a high water-demanding crop often cultivated in areas with limited water supply. This study aims to evaluate the effect of MTW on the physiology and biomass yield of Tabasco pepper under wat...
Autores principales: | , , , |
---|---|
Formato: | Artículo |
Lenguaje: | Español |
Publicado: |
Corporación colombiana de investigación agropecuaria - AGROSAVIA
2024
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12324/38817 https://doi.org/10.21930/rcta.vol23_num2_art:2476 |
id |
RepoAGROSAVIA38817 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Español |
topic |
Fisiología de la planta nutrición - F61 Capsicum annuum Eficiencia del riego Fotosíntesis Potencial hídrico foliar Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_1288 http://aims.fao.org/aos/agrovoc/c_f6058be7 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_37242 |
spellingShingle |
Fisiología de la planta nutrición - F61 Capsicum annuum Eficiencia del riego Fotosíntesis Potencial hídrico foliar Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_1288 http://aims.fao.org/aos/agrovoc/c_f6058be7 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_37242 Ospina Salazar, Daniel Iván Cortez Hernández, Luis Gerardo Benavides Bolaños, Jhony Armando Zúñiga Escobar, Orlando Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water |
description |
Magnetically treated water (MTW) has been used to promote biomass yield in different crops. Tabasco pepper is a high water-demanding crop often cultivated in areas with limited water supply. This study aims to evaluate the effect of MTW on the physiology and biomass yield of Tabasco pepper under water deficit. The experiment consisted of two groups of randomly distributed plants receiving normal water and MTW at two irrigation levels (100 % and 50 % of field capacity, FC) during the whole life cycle under mesh-house. Water was magnetically treated with a commercial irrigation device. Fruit biomass, photosynthesis, water potential, and leaf tissue status were measured. Fruit yield showed a non-significant increase in plants with MTW at both irrigation levels, although large- and medium-sized effects were detected regarding dry weight and fruits per plant (> 16 % increase). Concerning photosynthesis parameters, only quantum yield significantly increased, even though net assimilation and stomatal conductance exhibited a 17 % and 28 % increment, respectively. At 50 % FC, photosynthetic parameters and leaf water potential were severely impaired no matter the treatment used, but surprisingly, relative water content and electrolyte leakage in leaves were not significantly affected. Despite the minor physiological effects of MTW observed in this study, the size effect on fruit yield was noticeable at the end of the experiments. Hence, the application of MTW could help improve water use efficiency in Tabasco pepper in combination with reduced irrigation strategies. |
format |
Artículo |
author |
Ospina Salazar, Daniel Iván Cortez Hernández, Luis Gerardo Benavides Bolaños, Jhony Armando Zúñiga Escobar, Orlando |
author_facet |
Ospina Salazar, Daniel Iván Cortez Hernández, Luis Gerardo Benavides Bolaños, Jhony Armando Zúñiga Escobar, Orlando |
author_sort |
Ospina Salazar, Daniel Iván |
title |
Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water |
title_short |
Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water |
title_full |
Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water |
title_fullStr |
Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water |
title_full_unstemmed |
Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water |
title_sort |
fruit yield of tabasco pepper under water deficit with magnetically treated water |
publisher |
Corporación colombiana de investigación agropecuaria - AGROSAVIA |
publishDate |
2024 |
url |
http://hdl.handle.net/20.500.12324/38817 https://doi.org/10.21930/rcta.vol23_num2_art:2476 |
work_keys_str_mv |
AT ospinasalazardanielivan fruityieldoftabascopepperunderwaterdeficitwithmagneticallytreatedwater AT cortezhernandezluisgerardo fruityieldoftabascopepperunderwaterdeficitwithmagneticallytreatedwater AT benavidesbolanosjhonyarmando fruityieldoftabascopepperunderwaterdeficitwithmagneticallytreatedwater AT zunigaescobarorlando fruityieldoftabascopepperunderwaterdeficitwithmagneticallytreatedwater AT ospinasalazardanielivan rendimientofrutalenajitabascobajodeficithidricoconaguatratadamagneticamente AT cortezhernandezluisgerardo rendimientofrutalenajitabascobajodeficithidricoconaguatratadamagneticamente AT benavidesbolanosjhonyarmando rendimientofrutalenajitabascobajodeficithidricoconaguatratadamagneticamente AT zunigaescobarorlando rendimientofrutalenajitabascobajodeficithidricoconaguatratadamagneticamente |
_version_ |
1808104862677729280 |
spelling |
RepoAGROSAVIA388172024-01-30T03:00:22Z Fruit Yield of Tabasco Pepper Under Water Deficit with Magnetically Treated Water Rendimiento frutal en ají Tabasco bajo déficit hídrico con agua tratada magnéticamente Ospina Salazar, Daniel Iván Cortez Hernández, Luis Gerardo Benavides Bolaños, Jhony Armando Zúñiga Escobar, Orlando Fisiología de la planta nutrición - F61 Capsicum annuum Eficiencia del riego Fotosíntesis Potencial hídrico foliar Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_1288 http://aims.fao.org/aos/agrovoc/c_f6058be7 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_37242 Magnetically treated water (MTW) has been used to promote biomass yield in different crops. Tabasco pepper is a high water-demanding crop often cultivated in areas with limited water supply. This study aims to evaluate the effect of MTW on the physiology and biomass yield of Tabasco pepper under water deficit. The experiment consisted of two groups of randomly distributed plants receiving normal water and MTW at two irrigation levels (100 % and 50 % of field capacity, FC) during the whole life cycle under mesh-house. Water was magnetically treated with a commercial irrigation device. Fruit biomass, photosynthesis, water potential, and leaf tissue status were measured. Fruit yield showed a non-significant increase in plants with MTW at both irrigation levels, although large- and medium-sized effects were detected regarding dry weight and fruits per plant (> 16 % increase). Concerning photosynthesis parameters, only quantum yield significantly increased, even though net assimilation and stomatal conductance exhibited a 17 % and 28 % increment, respectively. At 50 % FC, photosynthetic parameters and leaf water potential were severely impaired no matter the treatment used, but surprisingly, relative water content and electrolyte leakage in leaves were not significantly affected. Despite the minor physiological effects of MTW observed in this study, the size effect on fruit yield was noticeable at the end of the experiments. Hence, the application of MTW could help improve water use efficiency in Tabasco pepper in combination with reduced irrigation strategies. Ají-Capsicum annuum 2024-01-29T12:57:24Z 2024-01-29T12:57:24Z 2022-06-20 2022 Artículo científico http://purl.org/coar/version/c_970fb48d4fbd8a85 2500-5308 http://hdl.handle.net/20.500.12324/38817 https://doi.org/10.21930/rcta.vol23_num2_art:2476 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Ciencia y Tecnología Agropecuaria 23 2 1 15 Alabi, A., Chiesa, M., Garlisi, C., & Palmisano, G. (2015). Advances in anti-scale magnetic water treatment. Environmental Science: Water Research & Technology, 1(4), 408-425. https://doi.org/10.1039/c5ew00052a Al-Khazan, M., Abdullatif, M., & Al-Assaf, N. (2011). Effects of magnetically treated water on water status, chlorophyll pigments, and some elements content of Jojoba (Simmondsia chinensis L.) at different growth stages. African Journal Environmental Science & Technology, 5(9), 722-731. https://academicjournals.org/article/article1380372603_Al-Khazan%20et%20al.pdf Al-Ogaidi, A. A. M., Wayayok, A., Rowshon, M. K., & Fikri, A. (2017). The influence of magnetized water on soil water dynamics under drip irrigation systems. Agricultural Water Management, 180, 70-77. https://doi.org/10.1016/j.agwat.2016.11.001 Améglio, T., Archer, P., Cohen, M., Valancogne, C., Daudet, F. A., Dayau, S., & Cruiziat, P. (1999). Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant & Soil, 207(2), 155-167. https://doi.org/10.1023/A:1026415302759 Amira, M. S., Qados, A., Hozayn, M. (2010). Response of growth, yield, yield components, and some chemical constituents of flax for irrigation with magnetized and tap water. World Applied Sciences Journal, 8(5), 630-634. http://idosi.org/wasj/wasj8(5)10/15a.pdf Ben-Amor, H., Elaoud, A., Salah, B., & Elmoueddeb, K. (2017). Effect of magnetic treatment on surface tension and water evaporation. International Journal of Advance Industrial Engineering, 5(3), 119-124. https://doi.org/10.14741/Ijae/5.3.4 Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure, 938(1-3), 15-19. https://doi.org/10.1016/j.molstruc.2009.08.037 Fathi, A., Mohamed, T., Claude, G., Maurin, G., & Mohamed, B. A. (2006). Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Research, 40(10), 1941-1950. https://doi.org/10.1016/j.watres.2006.03.013 Ferrari, F. P., Luis, R. A. G. F., Antonio, E. K., Josue, F. Da S. J., Camila, P. C., & Rafael, L. (2015). Response of lettuce crop to magnetically treated irrigation water and different irrigation depths. African Journal of Agricultural Research, 10(22), 2300-2308. https://doi.org/10.5897/ajar2015.9616 Hasaani, A. S., Hadi, Z. L., & Rasheed, K. A. (2015). Experimental study of the interaction of magnetic fields with flowing water. International Journal of Basic & Applied Sciences, 3(3), 1-8. Khoshravesh, M., Mostafazadeh-Fard, B., Mousavi, S. F., & Kiani, A. R. (2011). Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil & Use Management, 27(4), 515-522. https://doi.org/10.1111/j.1475-2743.2011.00358.x Kunzhen, J., Guanghui, W., & Jianao, Q. (1994). Effect of magnetized water on esterase isozymes in the leaves of tomato plant. Acta Botatica Boreali-Occidentalia Sinica, 14(2), 102-106. Marei, A., Rdaydeh, D., Karajeh, D., & Abu-Khalaf, N. (2014). Effect of using magnetic brackish water on irrigated bell pepper crop (Capsicum annuum L.) characteristics in lower Jordan Valley/West. Journal of Agricultural Sciences & Technology, 4, 830-938. https://scholar.ptuk.edu.ps/handle/123456789/371 Ogunlela, A. O., & Yusuf, K. O. (2016). Effects of water stress on growth and yield of tomato irrigated with magnetically treated water. Nigerian Journal of Pure Applied Sciences, 29(2), 2824-2835. http://njpas.com.ng/wp-content/uploads/2017/04/14.pdf Ospina-Salazar, D. I., Rachmilevitch, S., Cuervo-Jurado, S., & Zúñiga-Escobar, O. (2021). Biomass accumulation and physiological responses of tomato plants to magnetically–treated water in hydroponic conditions. Bioarxiv. https://doi.org/10.1101/2021.09.21.461287 Pérez-Gutiérrez, A., Garruña, R., Vázquez, P., & Latournerie, L. (2016). Growth, phenology and chlorophyll fluorescence of habanero pepper (Capsicum chinense Jacq.) under water stress conditions. Acta Agronómica, 66(2), 214-220. https://doi.org/10.15446/acag.v66n2.55897 Phimchan, P., Techawongstien, S., & Bosland, P. W. (2012). Impact of drought stress on the accumulation of capsaicinoids in Capsicum cultivars with different initial capsaicinoid levels. American Society for Horticultural Science, 47(9), 1204-1209. https://doi.org/10.21273/HORTSCI.47.9.1204 Rachmilevitch, S., Lambers, H., & Huang, B. (2006). Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. Journal of Experimental Botany, 57(3), 623-631. https://doi.org/10.1093/jxb/erj047 Ripullone, F., Guerrieri, M. R., Nole, A., Magnani, F., & Borghetti, M. (2007). Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees, 21(3), 371-378. https://doi.org/10.1007/s00468-007-0130-6 Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y. T., Michaud, J. M., Papahadjopoulos-Sternberg, B., Yang, J., Zuo, Y. Y., Steppe, K., Jansen, S. (2017). Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiol, 173(2), 1177-1196. https://doi.org/10.1104/pp.16.01039 Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the P value is not enough. Journal of Graduate Medical Education, 4(3), 279-282. https://doi.org/10.4300/jgme-d-12-00156.1 Surendran, U., Sandeep, O., & Joseph, E. J. (2016). The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Management, 178, 21-29. https://doi.org/10.1016/j.agwat.2016.08.016 Valentovič, P., Luxová, M., Kolarovič, L., & Gašparíková, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil & Environment, 52(4), 186-191. https://doi.org/10.17221/3364-pse Yusuf, K. O., & Ogunlela, A. O. (2017). Effects of deficit irrigation on the growth and yield of tomato (Solanum lycopersicum) irrigated with magnetized water. Environmental Engineering and Management Journal, 73(1), 59-68. https://erem.ktu.lt/index.php/erem/article/view/14138 Zúñiga O, Benavides J. A., Ospina-Salazar D. I., Jiménez C. O., Gutiérrez M. A. (2016) Tratamiento magnético de agua de riego y semillas en agricultura. Ingeniería y competitividad. 18(2), 217-32. https://doi.org/10.25100/iyc.v18i2.2170 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Corporación colombiana de investigación agropecuaria - AGROSAVIA Mosquera (Colombia) Ciencia y Tecnología Agropecuaria; Vol 23, Núm.2 (2022): Ciencia y Tecnología Agropecuaria; p. 1-15. |