Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero

Food fraud is a serious concern for the food industry and consumers. A common fraud is mixing fruit cultivars with similar appearance but significant differences in quality and sensory characteristics, and, hence, different prices. Detecting these abnormalities by visual inspection is challenging...

Descripción completa

Detalles Bibliográficos
Autores principales: Castillo-Gironés, Salvador, Cubero, Sergio, López-Chulia, Marina, Munera, Sandra, Rodríguez, Alejandro, Martínez-Onandi, Nerea, Aleixos, Nuria, Blasco, José
Formato: conferenceObject
Lenguaje:Español
Publicado: 2024
Materias:
Acceso en línea:https://hdl.handle.net/20.500.11939/8878
_version_ 1855032871031406592
author Castillo-Gironés, Salvador
Cubero, Sergio
López-Chulia, Marina
Munera, Sandra
Rodríguez, Alejandro
Martínez-Onandi, Nerea
Aleixos, Nuria
Blasco, José
author_browse Aleixos, Nuria
Blasco, José
Castillo-Gironés, Salvador
Cubero, Sergio
López-Chulia, Marina
Martínez-Onandi, Nerea
Munera, Sandra
Rodríguez, Alejandro
author_facet Castillo-Gironés, Salvador
Cubero, Sergio
López-Chulia, Marina
Munera, Sandra
Rodríguez, Alejandro
Martínez-Onandi, Nerea
Aleixos, Nuria
Blasco, José
author_sort Castillo-Gironés, Salvador
collection ReDivia
description Food fraud is a serious concern for the food industry and consumers. A common fraud is mixing fruit cultivars with similar appearance but significant differences in quality and sensory characteristics, and, hence, different prices. Detecting these abnormalities by visual inspection is challenging when all fruits appear similarly. It is then required tools capable of separating the fruits by detecting some internal properties, such as those based on spectral information. In this study, two loquat cultivars were used: ‘Algerie’, a traditional sweet cultivar, and ‘Xirlero’, a cultivar with good production but slightly astringent. Both are harvested during the same period and have similar external features but differ in sensory characteristics and price. Samples corresponding to 300 ‘Xirlero’ and 259 ‘Algerie’ loquats were selected. Hyperspectral images were acquired in the range 450 – 1000 nm, and the mean spectra of each loquat were extracted. The spectra collected were divided into a training set (70%) and an independent test set (30%). Three models were built to classify the two varieties: Partial Least Squares Discriminant Analysis, Support Vector Machine, and Extra Trees Classifier. All models achieved accuracy above 85%, indicating that hyperspectral imaging is a promising technology for distinguishing between very similar cultivars of fruits.
format conferenceObject
id ReDivia8878
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Español
publishDate 2024
publishDateRange 2024
publishDateSort 2024
record_format dspace
spelling ReDivia88782025-04-25T14:50:52Z Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero Castillo-Gironés, Salvador Cubero, Sergio López-Chulia, Marina Munera, Sandra Rodríguez, Alejandro Martínez-Onandi, Nerea Aleixos, Nuria Blasco, José N01 Agricultural engineering Loquats Image analysis Cultivated varieties Identification Food fraud is a serious concern for the food industry and consumers. A common fraud is mixing fruit cultivars with similar appearance but significant differences in quality and sensory characteristics, and, hence, different prices. Detecting these abnormalities by visual inspection is challenging when all fruits appear similarly. It is then required tools capable of separating the fruits by detecting some internal properties, such as those based on spectral information. In this study, two loquat cultivars were used: ‘Algerie’, a traditional sweet cultivar, and ‘Xirlero’, a cultivar with good production but slightly astringent. Both are harvested during the same period and have similar external features but differ in sensory characteristics and price. Samples corresponding to 300 ‘Xirlero’ and 259 ‘Algerie’ loquats were selected. Hyperspectral images were acquired in the range 450 – 1000 nm, and the mean spectra of each loquat were extracted. The spectra collected were divided into a training set (70%) and an independent test set (30%). Three models were built to classify the two varieties: Partial Least Squares Discriminant Analysis, Support Vector Machine, and Extra Trees Classifier. All models achieved accuracy above 85%, indicating that hyperspectral imaging is a promising technology for distinguishing between very similar cultivars of fruits. 2024-05-07T09:13:17Z 2024-05-07T09:13:17Z Sevilla conferenceObject Castillo-Gironés, S., Cubero, S., Lopez-Chulia, M., Munera, S., Rodríguez, A., Martínez-Onandi, N., Gómez-Sanchís, J., Aleixos, N., Blasco, J. (2023) Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero. XII Congreso Ibérico de Agroingeniería, Sevilla, 855-861. https://hdl.handle.net/20.500.11939/8878 es 2023-09-04 XII Congreso Ibérico de Agroingeniería Sevilla Este trabajo ha sido parcialmente financiado a través de los proyectos AEI PID2019- 107347RR-C31, C32 y C33 y fondos FEDER, y GVA CIPROM/2021/014. Salvador Castillo agradece a INIA por la beca FPI-INIA PRE2020-094491, con el apoyo de fondos FSE de la Unión Europea. Los autores agradecen a la Cooperativa Agrícola Ruchey de Callosa d’En Sarrià por suministrar la fruta y por el apoyo técnico. Sandra Munera agradece el contrato postdoctoral Juan de la Cierva-Formación (FJC2021-047786-I) cofinanciado por MICIN AEI/10.13039/501100011033 y la UE NextGenerationEU/PRTR. Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ openAccess electronico
spellingShingle N01 Agricultural engineering
Loquats
Image analysis
Cultivated varieties
Identification
Castillo-Gironés, Salvador
Cubero, Sergio
López-Chulia, Marina
Munera, Sandra
Rodríguez, Alejandro
Martínez-Onandi, Nerea
Aleixos, Nuria
Blasco, José
Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero
title Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero
title_full Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero
title_fullStr Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero
title_full_unstemmed Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero
title_short Uso de imagen hiperespectral para la discriminación en postcosecha de variedades similares de níspero
title_sort uso de imagen hiperespectral para la discriminacion en postcosecha de variedades similares de nispero
topic N01 Agricultural engineering
Loquats
Image analysis
Cultivated varieties
Identification
url https://hdl.handle.net/20.500.11939/8878
work_keys_str_mv AT castillogironessalvador usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero
AT cuberosergio usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero
AT lopezchuliamarina usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero
AT munerasandra usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero
AT rodriguezalejandro usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero
AT martinezonandinerea usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero
AT aleixosnuria usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero
AT blascojose usodeimagenhiperespectralparaladiscriminacionenpostcosechadevariedadessimilaresdenispero