Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers

Green mold (Penicillium digitatum) and blue mold (Penicillium italicum) are important sources of postharvest decay affecting the commercialization of mandarins. These fungi infections produce enormous economic losses in mandarin production if early detection is not carried out. Nowadays, this detect...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez-Sanchís, Juan, Blasco, José, Soria-Olivas, Emilio, Lorente, Delia, Escandell-Montero, P., Martínez-Martínez, José M., Martinez-Sober, Marcelino, Aleixos, Nuria
Formato: Artículo
Lenguaje:Inglés
Publicado: 2017
Acceso en línea:http://hdl.handle.net/20.500.11939/5313
_version_ 1855491904304578560
author Gómez-Sanchís, Juan
Blasco, José
Soria-Olivas, Emilio
Lorente, Delia
Escandell-Montero, P.
Martínez-Martínez, José M.
Martinez-Sober, Marcelino
Aleixos, Nuria
author_browse Aleixos, Nuria
Blasco, José
Escandell-Montero, P.
Gómez-Sanchís, Juan
Lorente, Delia
Martinez-Sober, Marcelino
Martínez-Martínez, José M.
Soria-Olivas, Emilio
author_facet Gómez-Sanchís, Juan
Blasco, José
Soria-Olivas, Emilio
Lorente, Delia
Escandell-Montero, P.
Martínez-Martínez, José M.
Martinez-Sober, Marcelino
Aleixos, Nuria
author_sort Gómez-Sanchís, Juan
collection ReDivia
description Green mold (Penicillium digitatum) and blue mold (Penicillium italicum) are important sources of postharvest decay affecting the commercialization of mandarins. These fungi infections produce enormous economic losses in mandarin production if early detection is not carried out. Nowadays, this detection is performed manually in dark chambers, where the fruit is illuminated by ultraviolet light to produce fluorescence, which is potentially dangerous for humans. This paper documents a new methodology based on hyperspectral imaging and advanced machine-learning techniques (artificial neural networks and classification and regression trees) for the segmentation and classification of images of citrus free of damage and affected by green mold and blue mold. Feature selection methods are used in order to reduce the dimensionality of the hyperspectral images and determine the 10 most relevant. Neural Networks were used to segment the hyperspectral images. Result's achieved using classifiers based on decision trees show an accuracy of around 93% in the problem of decay classification.
format Artículo
id ReDivia5313
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
record_format dspace
spelling ReDivia53132025-04-25T14:42:01Z Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers Gómez-Sanchís, Juan Blasco, José Soria-Olivas, Emilio Lorente, Delia Escandell-Montero, P. Martínez-Martínez, José M. Martinez-Sober, Marcelino Aleixos, Nuria Green mold (Penicillium digitatum) and blue mold (Penicillium italicum) are important sources of postharvest decay affecting the commercialization of mandarins. These fungi infections produce enormous economic losses in mandarin production if early detection is not carried out. Nowadays, this detection is performed manually in dark chambers, where the fruit is illuminated by ultraviolet light to produce fluorescence, which is potentially dangerous for humans. This paper documents a new methodology based on hyperspectral imaging and advanced machine-learning techniques (artificial neural networks and classification and regression trees) for the segmentation and classification of images of citrus free of damage and affected by green mold and blue mold. Feature selection methods are used in order to reduce the dimensionality of the hyperspectral images and determine the 10 most relevant. Neural Networks were used to segment the hyperspectral images. Result's achieved using classifiers based on decision trees show an accuracy of around 93% in the problem of decay classification. 2017-06-01T10:12:07Z 2017-06-01T10:12:07Z 2013 AUG 2013 article Gomez-Sanchis, J., Blasco, J., Soria-Olivas, E., Lorente, D., Escandell-Montero, P., Martinez-Martinez, J.M., Martinez-Sober, M., Aleixos, N. (2013). Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. Postharvest Biology and Technology, 82, 76-86. 0925-5214 http://hdl.handle.net/20.500.11939/5313 10.1016/j.postharvbio.2013.02.011 en openAccess Impreso
spellingShingle Gómez-Sanchís, Juan
Blasco, José
Soria-Olivas, Emilio
Lorente, Delia
Escandell-Montero, P.
Martínez-Martínez, José M.
Martinez-Sober, Marcelino
Aleixos, Nuria
Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers
title Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers
title_full Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers
title_fullStr Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers
title_full_unstemmed Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers
title_short Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers
title_sort hyperspectral lctf based system for classification of decay in mandarins caused by penicillium digitatum and penicillium italicum using the most relevant bands and non linear classifiers
url http://hdl.handle.net/20.500.11939/5313
work_keys_str_mv AT gomezsanchisjuan hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers
AT blascojose hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers
AT soriaolivasemilio hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers
AT lorentedelia hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers
AT escandellmonterop hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers
AT martinezmartinezjosem hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers
AT martinezsobermarcelino hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers
AT aleixosnuria hyperspectrallctfbasedsystemforclassificationofdecayinmandarinscausedbypenicilliumdigitatumandpenicilliumitalicumusingthemostrelevantbandsandnonlinearclassifiers