Role for Rhizobium rhizogenes K84 Cell Envelope Polysaccharides in Surface Interactions

Rhizobium rhizogenes strain K84 is a commercial biocontrol agent used worldwide to control crown gall disease. The organism binds tightly to polypropylene substrate and efficiently colonizes root surfaces as complex, multilayered biofilms. A genetic screen identified two mutants in which these surfa...

Descripción completa

Detalles Bibliográficos
Autores principales: Abarca-Grau, Ana M., Burbank, Lindsey P., de Paz, Hector D., Crespo-Rivas, Juan C., Marco-Noales, Ester, López, María M., Vinardell, Jose M., von Bodman, Susanne B., Penyalver, Ramón
Formato: article
Lenguaje:Inglés
Publicado: 2017
Acceso en línea:http://hdl.handle.net/20.500.11939/4516
Descripción
Sumario:Rhizobium rhizogenes strain K84 is a commercial biocontrol agent used worldwide to control crown gall disease. The organism binds tightly to polypropylene substrate and efficiently colonizes root surfaces as complex, multilayered biofilms. A genetic screen identified two mutants in which these surface interactions were affected. One of these mutants failed to attach and form biofilms on the abiotic surface although, interestingly, it exhibited normal biofilm formation on the biological root tip surface. This mutant is disrupted in a wcbD ortholog gene, which is part of a large locus predicted to encode functions for the biosynthesis and export of a group II capsular polysaccharide (CPS). Expression of a functional copy of wcbD in the mutant background restored the ability of the bacteria to attach and form normal biofilms on the abiotic surface. The second identified mutant attached and formed visibly denser biofilms on both abiotic and root tip surfaces. This mutant is disrupted in the rkpK gene, which is predicted to encode a UDP-glucose 6-dehydrogenase required for O-antigen lipopolysaccharide (LPS) and K-antigen capsular polysaccharide (KPS) biosynthesis in rhizobia. The rkpK mutant from strain K84 was deficient in O-antigen synthesis and exclusively produced rough LPS. We also show that strain K84 does not synthesize the KPS typical of some other rhizobia strains. In addition, we identified a putative type II CPS, distinct from KPS, that mediates cell-surface interactions, and we show that O antigen of strain K84 is necessary for normal cell-cell interactions in the biofilms.