Proteomic analysis of "Moncada" mandarin leaves with contrasting fruit load

A proteomic approach was used to know more about the molecular mechanism related to Citrus alternate bearing. To this end, we researched protein expression differences between on-crop and off-crop “Moncada” [Clementine ‘Oroval’ (Citrus clementina Hort ex Tanaka) x ‘Kara’ mandarin (Citrus unshiu Marc...

Descripción completa

Detalles Bibliográficos
Autores principales: Munoz-Fambuena, Natalia, Mesejo, Carlos, Agustí, Manuel, Tarraga, Susana, Iglesias, Domingo J., Primo-Millo, Eduardo, González-Mas, María C.
Formato: article
Lenguaje:Inglés
Publicado: 2017
Acceso en línea:http://hdl.handle.net/20.500.11939/4186
Descripción
Sumario:A proteomic approach was used to know more about the molecular mechanism related to Citrus alternate bearing. To this end, we researched protein expression differences between on-crop and off-crop “Moncada” [Clementine ‘Oroval’ (Citrus clementina Hort ex Tanaka) x ‘Kara’ mandarin (Citrus unshiu Marc. x Citrus nobilis Lou.)] mandarin leaves. This variety usually shows a remarkable behaviour in alternate production. Samples were collected in the period during which the fruit affect flowering induction. From 2D DIGE gel, 110 spots were isolated: 43 showed increased expression in the off-crop samples compared to on-crop samples, while 67 showed increased expression in the on-crop samples against off-crop samples. These spots were identified by MALDI-MS or LC-MS–MS. According to the up-expressed proteins in off-crop leaves such as proteins related to nutrient reservoir activity or to the pentose phosphate pathway, the primary metabolism was more active in off-crop trees than in on-crop trees. In contrast, the proteins up-expressed in on-crop samples such as catalase were related to the oxidoreductase activity and, therefore, the redox state seemed different for off-crop and for on-crop leaves. Other proteins with unknown functions were isolated, which could be also related to the alternate bearing and to the flowering induction.