Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina

Key message: To be useful for silvicultural and forest management practices, the models of Site Index (SI) should be based on accessible predictor variables. In this study, we used spatially explicit data obtained from digital elevation models and climate data to develop SI prediction models with hi...

Full description

Bibliographic Details
Main Authors: Fiandino, Santiago, Plevich, Jose, Tarico, Juan, Utello, Marco, Demaestri, Marcela, Gyenge, Javier
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Springer Science 2020
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/8432
https://link.springer.com/article/10.1007/s13595-020-01006-3
https://doi.org/10.1007/s13595-020-01006-3
_version_ 1855036034150039552
author Fiandino, Santiago
Plevich, Jose
Tarico, Juan
Utello, Marco
Demaestri, Marcela
Gyenge, Javier
author_browse Demaestri, Marcela
Fiandino, Santiago
Gyenge, Javier
Plevich, Jose
Tarico, Juan
Utello, Marco
author_facet Fiandino, Santiago
Plevich, Jose
Tarico, Juan
Utello, Marco
Demaestri, Marcela
Gyenge, Javier
author_sort Fiandino, Santiago
collection INTA Digital
description Key message: To be useful for silvicultural and forest management practices, the models of Site Index (SI) should be based on accessible predictor variables. In this study, we used spatially explicit data obtained from digital elevation models and climate data to develop SI prediction models with high local precision. Context: Predicting tree growth and yield is a key component to sustainable forest management and depends on accurate measures of site quality. Aims: The aim of this study was to develop both empirical models to predict site index (SI) from biophysical variables and a dynamic model of top height growth for plantations of Pinus elliottii Engelm. in Córdoba, Argentina. Methods: Site productivity described by SI was related to environmental characteristics, including topographic and climatic variables. Separate models were created from only topographic data and the combination of topographic and climate data. Results: Although SI can be adequately predicted through both types of models, the best results were obtained when combining topographic and climate variables (R2 = 0.83, RMSE% = 7.02%, for the best-fitting model). The key factors affecting site productivity were the landscape position and the mean precipitation of the last 5 years before the reference age, both related to the amount of plant-available water in the soils. Furthermore, the top height growth models developed are fairly accurate, considering the proportion of variance explained (R2 = 98%) and the precision of the estimates (RMSE% < 8%). Conclusion: The models developed here are likely to have considerable application in forestry, since they are based on accessible predictor variables, which make them useful for silvicultural and forest management practices, particularly for non-forest areas and for the young or uneven-aged stands.
format info:ar-repo/semantics/artículo
id INTA8432
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2020
publishDateRange 2020
publishDateSort 2020
publisher Springer Science
publisherStr Springer Science
record_format dspace
spelling INTA84322020-12-16T10:45:22Z Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina Fiandino, Santiago Plevich, Jose Tarico, Juan Utello, Marco Demaestri, Marcela Gyenge, Javier Ordenación Forestal Modelo Digital para Curvas de Nivel Pinus Elliottii Silvicultura Modelos de Crecimiento Forestal Argentina Forest Management Digital Elevation Models Silviculture Growth Models Key message: To be useful for silvicultural and forest management practices, the models of Site Index (SI) should be based on accessible predictor variables. In this study, we used spatially explicit data obtained from digital elevation models and climate data to develop SI prediction models with high local precision. Context: Predicting tree growth and yield is a key component to sustainable forest management and depends on accurate measures of site quality. Aims: The aim of this study was to develop both empirical models to predict site index (SI) from biophysical variables and a dynamic model of top height growth for plantations of Pinus elliottii Engelm. in Córdoba, Argentina. Methods: Site productivity described by SI was related to environmental characteristics, including topographic and climatic variables. Separate models were created from only topographic data and the combination of topographic and climate data. Results: Although SI can be adequately predicted through both types of models, the best results were obtained when combining topographic and climate variables (R2 = 0.83, RMSE% = 7.02%, for the best-fitting model). The key factors affecting site productivity were the landscape position and the mean precipitation of the last 5 years before the reference age, both related to the amount of plant-available water in the soils. Furthermore, the top height growth models developed are fairly accurate, considering the proportion of variance explained (R2 = 98%) and the precision of the estimates (RMSE% < 8%). Conclusion: The models developed here are likely to have considerable application in forestry, since they are based on accessible predictor variables, which make them useful for silvicultural and forest management practices, particularly for non-forest areas and for the young or uneven-aged stands. EEA Balcarce Fil: Fiandino, Santiago. Universidad Nacional de Río Cuarto. Departamento de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Plevich, José. Universidad Nacional de Río Cuarto. Departamento de Producción Vegetal; Argentina Fil: Tarico, Juan. Universidad Nacional de Río Cuarto. Departamento de Producción Vegetal; Argentina Fil: Utello, Marco. Universidad Nacional de Río Cuarto. Departamento de Producción Vegetal; Argentina Fil: Demaestri, Marcela. Universidad Nacional de Río Cuarto. Departamento de Producción Vegetal; Argentina Fil: Gyenge, Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Agencia de Extensión Rural Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina 2020-12-16T10:34:13Z 2020-12-16T10:34:13Z 2020-10 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/8432 https://link.springer.com/article/10.1007/s13595-020-01006-3 1297-966X (online) 1286-4560 (print) https://doi.org/10.1007/s13595-020-01006-3 eng info:eu-repo/semantics/restrictedAccess application/pdf Springer Science Annals of Forest Science 77 : 95 (2020)
spellingShingle Ordenación Forestal
Modelo Digital para Curvas de Nivel
Pinus Elliottii
Silvicultura
Modelos de Crecimiento Forestal
Argentina
Forest Management
Digital Elevation Models
Silviculture
Growth Models
Fiandino, Santiago
Plevich, Jose
Tarico, Juan
Utello, Marco
Demaestri, Marcela
Gyenge, Javier
Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina
title Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina
title_full Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina
title_fullStr Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina
title_full_unstemmed Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina
title_short Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina
title_sort modeling forest site productivity using climate data and topographic imagery in pinus elliottii plantations of central argentina
topic Ordenación Forestal
Modelo Digital para Curvas de Nivel
Pinus Elliottii
Silvicultura
Modelos de Crecimiento Forestal
Argentina
Forest Management
Digital Elevation Models
Silviculture
Growth Models
url http://hdl.handle.net/20.500.12123/8432
https://link.springer.com/article/10.1007/s13595-020-01006-3
https://doi.org/10.1007/s13595-020-01006-3
work_keys_str_mv AT fiandinosantiago modelingforestsiteproductivityusingclimatedataandtopographicimageryinpinuselliottiiplantationsofcentralargentina
AT plevichjose modelingforestsiteproductivityusingclimatedataandtopographicimageryinpinuselliottiiplantationsofcentralargentina
AT taricojuan modelingforestsiteproductivityusingclimatedataandtopographicimageryinpinuselliottiiplantationsofcentralargentina
AT utellomarco modelingforestsiteproductivityusingclimatedataandtopographicimageryinpinuselliottiiplantationsofcentralargentina
AT demaestrimarcela modelingforestsiteproductivityusingclimatedataandtopographicimageryinpinuselliottiiplantationsofcentralargentina
AT gyengejavier modelingforestsiteproductivityusingclimatedataandtopographicimageryinpinuselliottiiplantationsofcentralargentina