Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models

Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow be...

Descripción completa

Detalles Bibliográficos
Autores principales: Turino, Ludmila Noelia, Cristaldi, Mariano Daniel, Mariano, Rodolfo Nicolás, Boimvaser, Sonia, Scandolo Lucini, Daniel Edgardo
Formato: Artículo
Lenguaje:Inglés
Publicado: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) 2018
Materias:
Acceso en línea:http://revistas.inia.es/index.php/sjar/article/view/5271/2069
http://hdl.handle.net/20.500.12123/3921
http://dx.doi.org/10.5424/sjar/2014122-5271
_version_ 1855483330648080384
author Turino, Ludmila Noelia
Cristaldi, Mariano Daniel
Mariano, Rodolfo Nicolás
Boimvaser, Sonia
Scandolo Lucini, Daniel Edgardo
author_browse Boimvaser, Sonia
Cristaldi, Mariano Daniel
Mariano, Rodolfo Nicolás
Scandolo Lucini, Daniel Edgardo
Turino, Ludmila Noelia
author_facet Turino, Ludmila Noelia
Cristaldi, Mariano Daniel
Mariano, Rodolfo Nicolás
Boimvaser, Sonia
Scandolo Lucini, Daniel Edgardo
author_sort Turino, Ludmila Noelia
collection INTA Digital
description Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone.
format Artículo
id INTA3921
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2018
publishDateRange 2018
publishDateSort 2018
publisher Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
publisherStr Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
record_format dspace
spelling INTA39212018-11-16T15:17:52Z Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models Turino, Ludmila Noelia Cristaldi, Mariano Daniel Mariano, Rodolfo Nicolás Boimvaser, Sonia Scandolo Lucini, Daniel Edgardo Vacas Lecheras Razas (animales) Progesterona Análisis de Probabilidad Métodos Estadísticos Dairy Cows Breeds (animals) Progesterone Probability Analysis Statistical Methods Raza Holstein Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone. EEA Rafaela Fil: Turino, Ludmila Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Instituto de Desarrollo y Diseño; Argentina Fil: Mariano, Rodolfo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Boimvaser, Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Scandolo Lucini, Daniel Edgardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; Argentina 2018-11-16T15:16:39Z 2018-11-16T15:16:39Z 2014 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://revistas.inia.es/index.php/sjar/article/view/5271/2069 http://hdl.handle.net/20.500.12123/3921 1695-971X 2171-9292 http://dx.doi.org/10.5424/sjar/2014122-5271 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Spanish Journal of Agricultural Research 12 (2) : 396-404 (2014)
spellingShingle Vacas Lecheras
Razas (animales)
Progesterona
Análisis de Probabilidad
Métodos Estadísticos
Dairy Cows
Breeds (animals)
Progesterone
Probability Analysis
Statistical Methods
Raza Holstein
Turino, Ludmila Noelia
Cristaldi, Mariano Daniel
Mariano, Rodolfo Nicolás
Boimvaser, Sonia
Scandolo Lucini, Daniel Edgardo
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
title Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
title_full Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
title_fullStr Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
title_full_unstemmed Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
title_short Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
title_sort metabolic level recognition of progesterone in dairy holstein cows using probabilistic models
topic Vacas Lecheras
Razas (animales)
Progesterona
Análisis de Probabilidad
Métodos Estadísticos
Dairy Cows
Breeds (animals)
Progesterone
Probability Analysis
Statistical Methods
Raza Holstein
url http://revistas.inia.es/index.php/sjar/article/view/5271/2069
http://hdl.handle.net/20.500.12123/3921
http://dx.doi.org/10.5424/sjar/2014122-5271
work_keys_str_mv AT turinoludmilanoelia metaboliclevelrecognitionofprogesteroneindairyholsteincowsusingprobabilisticmodels
AT cristaldimarianodaniel metaboliclevelrecognitionofprogesteroneindairyholsteincowsusingprobabilisticmodels
AT marianorodolfonicolas metaboliclevelrecognitionofprogesteroneindairyholsteincowsusingprobabilisticmodels
AT boimvasersonia metaboliclevelrecognitionofprogesteroneindairyholsteincowsusingprobabilisticmodels
AT scandololucinidanieledgardo metaboliclevelrecognitionofprogesteroneindairyholsteincowsusingprobabilisticmodels