Automatic classification of legumes using leaf vein image features

In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a stand...

Full description

Bibliographic Details
Main Authors: Larese, Monica Graciela, Namias, Rafael, Craviotto, Roque Mario, Arango, Miriam Raquel, Gallo, Carina Del Valle, Granitto, Pablo Miguel
Format: Artículo
Language:Inglés
Published: 2018
Subjects:
Online Access:https://www.sciencedirect.com/science/article/pii/S0031320313002641
http://hdl.handle.net/20.500.12123/2512
https://doi.org/10.1016/j.patcog.2013.06.012
_version_ 1855483069440458752
author Larese, Monica Graciela
Namias, Rafael
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author_browse Arango, Miriam Raquel
Craviotto, Roque Mario
Gallo, Carina Del Valle
Granitto, Pablo Miguel
Larese, Monica Graciela
Namias, Rafael
author_facet Larese, Monica Graciela
Namias, Rafael
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author_sort Larese, Monica Graciela
collection INTA Digital
description In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.
format Artículo
id INTA2512
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2018
publishDateRange 2018
publishDateSort 2018
record_format dspace
spelling INTA25122018-06-21T12:33:40Z Automatic classification of legumes using leaf vein image features Larese, Monica Graciela Namias, Rafael Craviotto, Roque Mario Arango, Miriam Raquel Gallo, Carina Del Valle Granitto, Pablo Miguel Leguminosas Nervaduras Foliares Análisis de Imágenes Legumes Leaf Veins Image Analysis In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition. EEA Oliveros Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina 2018-05-30T12:08:08Z 2018-05-30T12:08:08Z 2014-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://www.sciencedirect.com/science/article/pii/S0031320313002641 http://hdl.handle.net/20.500.12123/2512 0031-3203 https://doi.org/10.1016/j.patcog.2013.06.012 eng info:eu-repo/semantics/restrictedAccess application/pdf Pattern recognition 47 (1) : 158-168. (January 2014)
spellingShingle Leguminosas
Nervaduras Foliares
Análisis de Imágenes
Legumes
Leaf Veins
Image Analysis
Larese, Monica Graciela
Namias, Rafael
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
Automatic classification of legumes using leaf vein image features
title Automatic classification of legumes using leaf vein image features
title_full Automatic classification of legumes using leaf vein image features
title_fullStr Automatic classification of legumes using leaf vein image features
title_full_unstemmed Automatic classification of legumes using leaf vein image features
title_short Automatic classification of legumes using leaf vein image features
title_sort automatic classification of legumes using leaf vein image features
topic Leguminosas
Nervaduras Foliares
Análisis de Imágenes
Legumes
Leaf Veins
Image Analysis
url https://www.sciencedirect.com/science/article/pii/S0031320313002641
http://hdl.handle.net/20.500.12123/2512
https://doi.org/10.1016/j.patcog.2013.06.012
work_keys_str_mv AT laresemonicagraciela automaticclassificationoflegumesusingleafveinimagefeatures
AT namiasrafael automaticclassificationoflegumesusingleafveinimagefeatures
AT craviottoroquemario automaticclassificationoflegumesusingleafveinimagefeatures
AT arangomiriamraquel automaticclassificationoflegumesusingleafveinimagefeatures
AT gallocarinadelvalle automaticclassificationoflegumesusingleafveinimagefeatures
AT granittopablomiguel automaticclassificationoflegumesusingleafveinimagefeatures