Characterization of the SARS-CoV-2 Mutation Pattern Generated In Vitro by the Antiviral Action of Lycorine
SARS-CoV-2 persists worldwide, driving the demand for effective antivirals that inhibit replication and limit the emergence of resistant variants. Lycorine, a non-nucleoside inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase, exhibits antiviral activity without direct mutagenic effects. Here, we e...
| Main Authors: | , , , , , , |
|---|---|
| Format: | info:ar-repo/semantics/artículo |
| Language: | Inglés |
| Published: |
MDPI
2025
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.12123/24774 https://www.mdpi.com/2673-8112/5/11/181 https://doi.org/10.3390/covid5110181 |
| Summary: | SARS-CoV-2 persists worldwide, driving the demand for effective antivirals that inhibit replication and limit the emergence of resistant variants. Lycorine, a non-nucleoside inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase, exhibits antiviral activity without direct mutagenic effects. Here, we examine the occurrence of single-nucleotide variants (SNVs) and insertions/deletions (indels) in SARS-CoV-2 B.1.499 strain during serial passages in Vero cells, comparing lycorine-treated cultures (2.5 and 5 µg/mL) with untreated controls. Whole-genome sequencing was used to assess mutation patterns and frequencies. Lycorine-treated passages displayed greater variant diversity than controls, with fixed mutations mainly affecting non-structural proteins (Nsp3-F1375A, Nsp5-L50F, and Nsp14-G265D) and the envelope protein (E-S6L). A 15-nucleotide deletion in the spike gene (QTQTN motif) occurred in both groups but became fixed only in untreated passages, suggesting negative selection under lycorine pressure. Notably, the L50F mutation in Nsp5, previously linked to nirmatrelvir resistance, was found exclusively in lycorine-treated passages. Additionally, a 1-nucleotide deletion in the accessory gene ORF8, detected only under lycorine treatment, resulted in a frameshift mutation that added four amino acids, potentially altering the protein’s function. Overall, lycorine induces a distinct mutation profile, favoring replication-related variants while suppressing deleterious deletions. These findings suggest potential mechanisms of cross-resistance and highlight the importance of monitoring resistance during clinical use. |
|---|