A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks

Most popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-speci...

Descripción completa

Detalles Bibliográficos
Autores principales: Chantre Balacca, Guillermo Ruben, Vigna, Mario Raul, Renzi Pugni, Juan Pablo, Blanco, Anibal Manuel
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:https://www.sciencedirect.com/science/article/pii/S1537511017306335
http://hdl.handle.net/20.500.12123/2333
https://doi.org/10.1016/j.biosystemseng.2018.03.014

Ejemplares similares: A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks