Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality

Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates...

Full description

Bibliographic Details
Main Authors: Casal, Alejo, Gizzi, Fernán Oscar, Figueroa, Sol Agostina, Petitti, Tomás Denis, Ferraguti, Facundo Javier, Gaido, Jimena, Torres Manno, Mariano Alberto, Céccoli, Gabriel, Paoletti, Luciana, Dunlap, Christopher, Daurelio, Lucas Damián, Espariz, Martín
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Springer 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/22979
https://link.springer.com/article/10.1007/s00253-025-13544-9
https://doi.org/10.1007/s00253-025-13544-9
_version_ 1855038675134447616
author Casal, Alejo
Gizzi, Fernán Oscar
Figueroa, Sol Agostina
Petitti, Tomás Denis
Ferraguti, Facundo Javier
Gaido, Jimena
Torres Manno, Mariano Alberto
Céccoli, Gabriel
Paoletti, Luciana
Dunlap, Christopher
Daurelio, Lucas Damián
Espariz, Martín
author_browse Casal, Alejo
Céccoli, Gabriel
Daurelio, Lucas Damián
Dunlap, Christopher
Espariz, Martín
Ferraguti, Facundo Javier
Figueroa, Sol Agostina
Gaido, Jimena
Gizzi, Fernán Oscar
Paoletti, Luciana
Petitti, Tomás Denis
Torres Manno, Mariano Alberto
author_facet Casal, Alejo
Gizzi, Fernán Oscar
Figueroa, Sol Agostina
Petitti, Tomás Denis
Ferraguti, Facundo Javier
Gaido, Jimena
Torres Manno, Mariano Alberto
Céccoli, Gabriel
Paoletti, Luciana
Dunlap, Christopher
Daurelio, Lucas Damián
Espariz, Martín
author_sort Casal, Alejo
collection INTA Digital
description Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates for antifungal activity against Fusarium graminearum, followed by RAPD analysis, identified 39 distinct genetic profiles, out of which 15 were classified in Bacillus amyloliquefaciens or Priestia megaterium groups by 16S RNA sequence. Whole-genome sequencing of selected strains enabled precise taxonomic classification and comprehensive trait prediction using in silico tools. Genomic mining revealed strain-specific distributions of beneficial traits, including antimicrobial compound production pathways and plant growth-promoting characteristics. Phenotypic validation confirmed key predicted traits while uncovering additional functionalities not detected in silico. Integration of kernel bioassays, pot experiments, and field trials identified Bacillus velezensis ZAV-W70 and P. megaterium ZAV-W64 as promising biofertilizer and biocontrol candidates, demonstrating enhanced yield without fungicides and improved bread-making quality, respectively. These findings highlight the value of combining genomic analysis with traditional screening methods for developing effective agricultural biologicals, contributing to sustainable wheat production practices.
format info:ar-repo/semantics/artículo
id INTA22979
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Springer
publisherStr Springer
record_format dspace
spelling INTA229792025-07-11T11:12:27Z Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality Casal, Alejo Gizzi, Fernán Oscar Figueroa, Sol Agostina Petitti, Tomás Denis Ferraguti, Facundo Javier Gaido, Jimena Torres Manno, Mariano Alberto Céccoli, Gabriel Paoletti, Luciana Dunlap, Christopher Daurelio, Lucas Damián Espariz, Martín Trigo Rendimiento Calidad Propiedad Antimicosica Genómica Wheat Yields Bacillaceae Quality Antifungal Properties Genomics Rhizobacteria Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates for antifungal activity against Fusarium graminearum, followed by RAPD analysis, identified 39 distinct genetic profiles, out of which 15 were classified in Bacillus amyloliquefaciens or Priestia megaterium groups by 16S RNA sequence. Whole-genome sequencing of selected strains enabled precise taxonomic classification and comprehensive trait prediction using in silico tools. Genomic mining revealed strain-specific distributions of beneficial traits, including antimicrobial compound production pathways and plant growth-promoting characteristics. Phenotypic validation confirmed key predicted traits while uncovering additional functionalities not detected in silico. Integration of kernel bioassays, pot experiments, and field trials identified Bacillus velezensis ZAV-W70 and P. megaterium ZAV-W64 as promising biofertilizer and biocontrol candidates, demonstrating enhanced yield without fungicides and improved bread-making quality, respectively. These findings highlight the value of combining genomic analysis with traditional screening methods for developing effective agricultural biologicals, contributing to sustainable wheat production practices. EEA Oliveros Fil: Casal, Alejo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología e Inocuidad de los Alimentos; Argentina Fil: Casal, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología Molecular y Celular de Rosario. Laboratorio de Genética y Fisiología de Bacterias Lácticas; Argentina Fil: Casal, Alejo. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario. Laboratorio de Genética y Fisiología de Bacterias Lácticas; Argentina Fil: Gizzi, Fernán Oscar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología e Inocuidad de los Alimentos; Argentina Fil: Gizzi, Fernán Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología Molecular y Celular de Rosario. Laboratorio de Genética y Fisiología de Bacterias Lácticas; Argentina Fil: Gizzi, Fernán Oscar. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario. Laboratorio de Genética y Fisiología de Bacterias Lácticas; Argentina Fil: Figueroa, Sol Agostina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología Acuática; Argentina Fil: Figueroa, Sol Agostina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Petitti, Tomás Denis. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología Acuática; Argentina Fil: Petitti, Tomás Denis. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Matemática y Estadística. Área Bioinformática; Argentina Fil: Ferraguti, Facundo Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Gaido, Jimena. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral). Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal; Argentina Fil: Gaido, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral). Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal; Argentina Fil: Gaido, Jimena. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal; Argentina Fil: Torres Manno, Mariano Alberto. TAXON Bioinformatics Solutions S.A.; Argentina Fil: Céccoli, Gabriel. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral). Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal; Argentina Fil: Céccoli, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral). Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal; Argentina Fil: Céccoli, Gabriel. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal; Argentina Fil: Paoletti, Luciana. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos; Argentina Fil: Paoletti, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Procesos Biotecnológicos y Químicos; Argentina Fil: Dunlap, Christopher. United States Department of Agriculture. Agricultural Research Service. National Center for Agricultural Utilization Research. Crop Bioprotection Research Unit; Estados Unidos Fil: Daurelio, Lucas Damián. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral). Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal; Argentina Fil: Daurelio, Lucas Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral). Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal; Argentina Fil: Daurelio, Lucas Damián. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal; Argentina Fil: Espariz, Martín. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología Acuática; Argentina Fil: Espariz, Martín. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Matemática y Estadística. Área Bioinformática; Argentina 2025-07-11T11:07:47Z 2025-07-11T11:07:47Z 2025-07 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/22979 https://link.springer.com/article/10.1007/s00253-025-13544-9 0175-7598 1432-0614 https://doi.org/10.1007/s00253-025-13544-9 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Springer Applied Microbiology and Biotechnology 109 : article number 164. (2025)
spellingShingle Trigo
Rendimiento
Calidad
Propiedad Antimicosica
Genómica
Wheat
Yields
Bacillaceae
Quality
Antifungal Properties
Genomics
Rhizobacteria
Casal, Alejo
Gizzi, Fernán Oscar
Figueroa, Sol Agostina
Petitti, Tomás Denis
Ferraguti, Facundo Javier
Gaido, Jimena
Torres Manno, Mariano Alberto
Céccoli, Gabriel
Paoletti, Luciana
Dunlap, Christopher
Daurelio, Lucas Damián
Espariz, Martín
Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality
title Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality
title_full Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality
title_fullStr Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality
title_full_unstemmed Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality
title_short Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality
title_sort genomically selected antifungal bacillaceae strains improve wheat yield and baking quality
topic Trigo
Rendimiento
Calidad
Propiedad Antimicosica
Genómica
Wheat
Yields
Bacillaceae
Quality
Antifungal Properties
Genomics
Rhizobacteria
url http://hdl.handle.net/20.500.12123/22979
https://link.springer.com/article/10.1007/s00253-025-13544-9
https://doi.org/10.1007/s00253-025-13544-9
work_keys_str_mv AT casalalejo genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT gizzifernanoscar genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT figueroasolagostina genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT petittitomasdenis genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT ferragutifacundojavier genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT gaidojimena genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT torresmannomarianoalberto genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT ceccoligabriel genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT paolettiluciana genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT dunlapchristopher genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT daureliolucasdamian genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality
AT esparizmartin genomicallyselectedantifungalbacillaceaestrainsimprovewheatyieldandbakingquality