Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models

Early detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensi...

Full description

Bibliographic Details
Main Authors: Hirigoyen, Andrés, Villacide, Jose Maria
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: MDPI 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/21240
https://www.mdpi.com/2072-4292/17/3/537
https://doi.org/10.3390/rs17030537
_version_ 1855038370827206656
author Hirigoyen, Andrés
Villacide, Jose Maria
author_browse Hirigoyen, Andrés
Villacide, Jose Maria
author_facet Hirigoyen, Andrés
Villacide, Jose Maria
author_sort Hirigoyen, Andrés
collection INTA Digital
description Early detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensing at various spatiotemporal scales to assess forest damage caused by the woodwasp Sirex noctilio in pine plantations. A Random Forest (RF) model was applied to analyze Planetscope satellite images of Sirex-affected areas in Neuquén, Argentina. The model’s results were validated through accuracy analysis and the Kappa method to ensure robustness. Our findings demonstrate that the RF model accurately classified Sirex damage levels, with classification accuracy improving progressively over time (overall accuracy of 87% for five severity categories and 98% for two severity categories). This allowed for a clearer distinction between healthy and Sirex-infested trees, as well as a more refined categorization of damage severity. This study highlights the potential of machine learning models to accurately assess tree health and quantify pest damage in plantation forests, offering valuable tools for large-scale pest monitoring.
format info:ar-repo/semantics/artículo
id INTA21240
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INTA212402025-02-13T10:58:22Z Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models Hirigoyen, Andrés Villacide, Jose Maria Sirex Forest Pests Remote Sensing Pinus Damage Mathematical Models Plagas Forestales Teledetección Daños Modelos Matemáticos Sirex noctilio Early detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensing at various spatiotemporal scales to assess forest damage caused by the woodwasp Sirex noctilio in pine plantations. A Random Forest (RF) model was applied to analyze Planetscope satellite images of Sirex-affected areas in Neuquén, Argentina. The model’s results were validated through accuracy analysis and the Kappa method to ensure robustness. Our findings demonstrate that the RF model accurately classified Sirex damage levels, with classification accuracy improving progressively over time (overall accuracy of 87% for five severity categories and 98% for two severity categories). This allowed for a clearer distinction between healthy and Sirex-infested trees, as well as a more refined categorization of damage severity. This study highlights the potential of machine learning models to accurately assess tree health and quantify pest damage in plantation forests, offering valuable tools for large-scale pest monitoring. EEA Bariloche Fil: Hirigoyen, Andrés. Instituto Nacional de Investigación Agropecuaria (INIA) Las Brujas. Sistema Forestal; Uruguay Fil: Villacide, Jose Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Villacide, Jose Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina 2025-02-13T10:56:51Z 2025-02-13T10:56:51Z 2025-02 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/21240 https://www.mdpi.com/2072-4292/17/3/537 2072-4292 https://doi.org/10.3390/rs17030537 eng info:eu-repograntAgreement/INTA/2023-PD-L01-I074, Bases ecológicas y epidemiológicas para el diseño de estrategias de manejo de plagas agrícolas y forestales info:eu-repograntAgreement/INTA/2023-PE-L03-I033, Gestión Sostenible de los sistemas forestales naturales y cultivados para el desarrollo de los territorios y la provisión de servicios ecosistémicos en Patagonia Andina info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf MDPI Remote Sensing 17 (3) : 537 (February 2025)
spellingShingle Sirex
Forest Pests
Remote Sensing
Pinus
Damage
Mathematical Models
Plagas Forestales
Teledetección
Daños
Modelos Matemáticos
Sirex noctilio
Hirigoyen, Andrés
Villacide, Jose Maria
Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
title Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
title_full Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
title_fullStr Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
title_full_unstemmed Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
title_short Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
title_sort assessing sirex noctilio fabricius hymenoptera siricidae damage in pine plantations using remote sensing and predictive machine learning models
topic Sirex
Forest Pests
Remote Sensing
Pinus
Damage
Mathematical Models
Plagas Forestales
Teledetección
Daños
Modelos Matemáticos
Sirex noctilio
url http://hdl.handle.net/20.500.12123/21240
https://www.mdpi.com/2072-4292/17/3/537
https://doi.org/10.3390/rs17030537
work_keys_str_mv AT hirigoyenandres assessingsirexnoctiliofabriciushymenopterasiricidaedamageinpineplantationsusingremotesensingandpredictivemachinelearningmodels
AT villacidejosemaria assessingsirexnoctiliofabriciushymenopterasiricidaedamageinpineplantationsusingremotesensingandpredictivemachinelearningmodels