Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
Early detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensi...
| Autores principales: | , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
MDPI
2025
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/21240 https://www.mdpi.com/2072-4292/17/3/537 https://doi.org/10.3390/rs17030537 |
Ejemplares similares: Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models
- Food and Host Searching Decisions Made by Ibalia leucospoides (Hymenoptera: Ibaliidae), a Parasitoid of Sirex noctilio (Hymenoptera:Siricidae)
- Life history traits of Sirex noctilio F. (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors
- Sirex noctilio flight behavior : towards improving current monitoring techniques
- Claves atrayentes de la avispa invasora Sirex noctilio (Hymenoptera: Siricidae)
- Spatial dynamics of a Sirex noctilio woodwasp population within a pine plantation in Patagonia, Argentina
- Trapping success and flight behavior of two parasitoid species of the woodwasp Sirex noctilio