_version_ 1855486345786425344
author Dominguez, Matías
Colombo, Denis Nahuel
Dillchneider Loza, Alexandra
Lavandera, Javier Eduardo
Corro Molas, Andres Ezequiel
Troglia, Carolina Beatriz
Paniego, Norma Beatriz
author_browse Colombo, Denis Nahuel
Corro Molas, Andres Ezequiel
Dillchneider Loza, Alexandra
Dominguez, Matías
Lavandera, Javier Eduardo
Paniego, Norma Beatriz
Troglia, Carolina Beatriz
author_facet Dominguez, Matías
Colombo, Denis Nahuel
Dillchneider Loza, Alexandra
Lavandera, Javier Eduardo
Corro Molas, Andres Ezequiel
Troglia, Carolina Beatriz
Paniego, Norma Beatriz
author_sort Dominguez, Matías
collection INTA Digital
description Poster y resumen
format Conferencia
id INTA19306
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher International Sunflower Association
publisherStr International Sunflower Association
record_format dspace
spelling INTA193062024-09-09T14:16:50Z Advancements in sunflower multiparental population phenotyping for Verticillium Wilt using UAV-based multispectral imagery Dominguez, Matías Colombo, Denis Nahuel Dillchneider Loza, Alexandra Lavandera, Javier Eduardo Corro Molas, Andres Ezequiel Troglia, Carolina Beatriz Paniego, Norma Beatriz Girasol Métodos de Mejoramiento Genético Aprendizaje Automático Fenotipado Enfermedades de las Plantas Marchitez por Verticillium Sunflowers Breeding Methods Machine Learning Phenotyping Plant Diseases Verticillium Wilt Multispectral Imagery Imágenes Multiespectrales Disease Phenotyping Poster y resumen Here we present progress in phenotyping a sunflower Multiparent Advanced Generation Inter-Crosses (MAGIC) population for Verticillium wilt (VW), one of the most important sunflower diseases in Argentina. In addition, the implementation of high-throughput phenotyping (HTP) using unmanned aerial vehicles (UAV) is being explored to complement manual phenotyping and integrate it into breeding pipelines. A subset of 349 F2- MAGIC families was studied during the 2020/21 summer season in a VW-infested field in the EEA INTA Balcarce (37°50′ 0″ S, 58°15′ 33″ W, Argentina). Eighty F5-MAGIC contrast families for VW were selected from the 2020/21 phenotyping trial and phenotyped in another VW- infested field in the EEA INTA Anguil (36° 32′17″ S, 63° 59′ 20″ W) in the 2023/24 summer season. VW incidence, severity and disease severity index (DSI) were recorded for each plot (one row of 5 m length). In the 2020/21 season, the trial was flown once during the flowering period (R5) using a Parrot Disco-Pro Ag drone with a Parrot Sequoia camera with 4 spectral bands, including green (G) (550nm ± 40nm), red (R) (660nm ± 40nm), red edge (RE) (735nm ± 10nm) and near infrared (NIR) (790nm ± 40nm). The flight altitude was 50 m. In the 2023/24 season, we used a Phantom 4 drone with a multispectral camera with five bands, including the blue (B) (450nm ± 16nm), G (560nm ± 16nm), R (650nm ± 16nm), RE (730nm ± 16nm) and NIR (840nm ± 26nm). The flight altitude was 40 m and the trial was flown four times during the flowering and grain-filling period from R1 to R9. The image processing was done with Agisoft Metashape for building the orthomosaics and with QGIS for creating the grid plot, extracting the reflectance and the vegetation indices (VIs) values. The Normalized Difference Vegetation Index (NDVI), the Normalized Water Vegetation Index (NWVI), the Optimized Soil-Adjusted Vegetation Index (OSAVI), and the Leaf Chlorophyll Index (LCI) VIs were estimated for the 2020/21 season. For the 2023/24 season, the NDVI, the Green Normalized Difference Vegetation Index (GNDVI), the Enhanced Vegetation Index (EVI), the Normalized difference red edge index (NDRE), the Green Red Vegetation Index (GRVI), the Green Leaf Index (GLI), the Plant Senescence Reflectance Index (PSRI), the Differenced Vegetation Index (DVI), the Visible Atmospherically Resistant Index (VARI) and the Chlorophyll Index Red Edge (CIRE) were extracted from each flight. Using the information from the spectral bands and the VIs, different machine learning models (MLM) were applied to classify each plot as susceptible or resistant to VW using the CARET library in R. The results confirmed the phenotypic variability of the MAGIC population for VW. Thirty resistant MAGIC F5 families exhibiting a DSI below 5 % were identified as valuable candidates for future breeding purposes. The MLM achieved a prediction accuracy of about 65 % in both trials, with the XGBoost model showing better prediction performance. Overall, the results highlight the potential of HTP for sunflower disease phenotyping and its applicability in sunflower breeding programs. EEA Pergamino Fil: Dominguez, Matías. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sector Girasol; Argentina Fil: Colombo, Denis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina Fil: Dillchneider Loza, Alexandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina Fil: Lavandera, Javier Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Girasol; Argentina Fil: Corro Molas, Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil. Agencia de Extensión Rural General Pico; Argentina Fil: Troglia, Carolina Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina 2024-09-09T14:04:18Z 2024-09-09T14:04:18Z 2024-08 info:ar-repo/semantics/documento de conferencia info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/19306 eng info:eu-repograntAgreement/INTA/2023-PE-L01-I111, Mejoramiento genético de oleaginosas: girasol, soja, colza y lino en rendimiento, calidad y sanidad, para contribuir a la sostenibilidad de los sistemas productivos info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf International Sunflower Association 21st International Sunflower Conference (ISC) will be held in Wuyuan, Inner Mongolia, China, August 21-24, 2024
spellingShingle Girasol
Métodos de Mejoramiento Genético
Aprendizaje Automático
Fenotipado
Enfermedades de las Plantas
Marchitez por Verticillium
Sunflowers
Breeding Methods
Machine Learning
Phenotyping
Plant Diseases
Verticillium Wilt
Multispectral Imagery
Imágenes Multiespectrales
Disease Phenotyping
Dominguez, Matías
Colombo, Denis Nahuel
Dillchneider Loza, Alexandra
Lavandera, Javier Eduardo
Corro Molas, Andres Ezequiel
Troglia, Carolina Beatriz
Paniego, Norma Beatriz
Advancements in sunflower multiparental population phenotyping for Verticillium Wilt using UAV-based multispectral imagery
title Advancements in sunflower multiparental population phenotyping for Verticillium Wilt using UAV-based multispectral imagery
title_full Advancements in sunflower multiparental population phenotyping for Verticillium Wilt using UAV-based multispectral imagery
title_fullStr Advancements in sunflower multiparental population phenotyping for Verticillium Wilt using UAV-based multispectral imagery
title_full_unstemmed Advancements in sunflower multiparental population phenotyping for Verticillium Wilt using UAV-based multispectral imagery
title_short Advancements in sunflower multiparental population phenotyping for Verticillium Wilt using UAV-based multispectral imagery
title_sort advancements in sunflower multiparental population phenotyping for verticillium wilt using uav based multispectral imagery
topic Girasol
Métodos de Mejoramiento Genético
Aprendizaje Automático
Fenotipado
Enfermedades de las Plantas
Marchitez por Verticillium
Sunflowers
Breeding Methods
Machine Learning
Phenotyping
Plant Diseases
Verticillium Wilt
Multispectral Imagery
Imágenes Multiespectrales
Disease Phenotyping
url http://hdl.handle.net/20.500.12123/19306
work_keys_str_mv AT dominguezmatias advancementsinsunflowermultiparentalpopulationphenotypingforverticilliumwiltusinguavbasedmultispectralimagery
AT colombodenisnahuel advancementsinsunflowermultiparentalpopulationphenotypingforverticilliumwiltusinguavbasedmultispectralimagery
AT dillchneiderlozaalexandra advancementsinsunflowermultiparentalpopulationphenotypingforverticilliumwiltusinguavbasedmultispectralimagery
AT lavanderajaviereduardo advancementsinsunflowermultiparentalpopulationphenotypingforverticilliumwiltusinguavbasedmultispectralimagery
AT corromolasandresezequiel advancementsinsunflowermultiparentalpopulationphenotypingforverticilliumwiltusinguavbasedmultispectralimagery
AT trogliacarolinabeatriz advancementsinsunflowermultiparentalpopulationphenotypingforverticilliumwiltusinguavbasedmultispectralimagery
AT paniegonormabeatriz advancementsinsunflowermultiparentalpopulationphenotypingforverticilliumwiltusinguavbasedmultispectralimagery