Volume estimation of unbroken soybeans samples using digital image processing techniques
The calculation of volume of different oilseed grains through computational models has demonstrated its effectiveness and efficiency. In the present work, the model has been extended to allow calculations of the soybean volume. The model proposes that each grain of the sample is assimilated to a par...
| Autores principales: | , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
Ediciones INTA
2024
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/17662 https://doi.org/10.58149/7aj0-5549 |
| _version_ | 1855037708605325312 |
|---|---|
| author | Villaverde, Jorge E. Cleva, Mario Sergio |
| author_browse | Cleva, Mario Sergio Villaverde, Jorge E. |
| author_facet | Villaverde, Jorge E. Cleva, Mario Sergio |
| author_sort | Villaverde, Jorge E. |
| collection | INTA Digital |
| description | The calculation of volume of different oilseed grains through computational models has demonstrated its effectiveness and efficiency. In the present work, the model has been extended to allow calculations of the soybean volume. The model proposes that each grain of the sample is assimilated to a parallelepiped with main axes L (length), W (width) and T (thickness). The L and W values are determined from the Feret distances of the image, and the thickness is assumed to be proportional to the width of the grain. The proportionality constant k is calculated by using the formula of the model and validated against the experimental volume of the samples, fielding a confidence or percentual relative deviation. The model developed approximates soybean volume with a confidence of 1.25%, using low-cost hardware for image acquisition and moderate computational resources. |
| format | info:ar-repo/semantics/artículo |
| id | INTA17662 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2024 |
| publishDateRange | 2024 |
| publishDateSort | 2024 |
| publisher | Ediciones INTA |
| publisherStr | Ediciones INTA |
| record_format | dspace |
| spelling | INTA176622024-05-08T13:42:17Z Volume estimation of unbroken soybeans samples using digital image processing techniques Villaverde, Jorge E. Cleva, Mario Sergio Soja Morfología Procesamiento Digital de Imágenes Soybeans Morphology Digital Image Processing The calculation of volume of different oilseed grains through computational models has demonstrated its effectiveness and efficiency. In the present work, the model has been extended to allow calculations of the soybean volume. The model proposes that each grain of the sample is assimilated to a parallelepiped with main axes L (length), W (width) and T (thickness). The L and W values are determined from the Feret distances of the image, and the thickness is assumed to be proportional to the width of the grain. The proportionality constant k is calculated by using the formula of the model and validated against the experimental volume of the samples, fielding a confidence or percentual relative deviation. The model developed approximates soybean volume with a confidence of 1.25%, using low-cost hardware for image acquisition and moderate computational resources. El cálculo del volumen de diferentes granos de oleaginosas a través de modelos computacionales ha demostrado efectividad y eficiencia. En el presente trabajo, el modelo se ha ampliado para permitir cálculos del volumen de soja. En el modelo propuesto, cada grano de la muestra se asimila a un paralelepípedo con ejes principales L (largo), W (ancho) y T (espesor). Los valores L y W se determinan a partir de las distancias de Feret de la imagen y se supone que el espesor es proporcional al ancho del grano. La constante de proporcionalidad k se calcula utilizando la fórmula del modelo y se valida frente al volumen experimental de las muestras, con una confianza o desviación relativa porcentual. El modelo desarrollado aproxima el volumen de soja con una confianza del 1,25% utilizando hardware de bajo costo para la adquisición de imágenes y recursos computacionales moderados. Gerencia de Contenidos Periodísticos y Editoriales, DNACI, INTA Fil: Villaverde, Jorge E. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina Fil: Cleva, Mario Sergio. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina 2024-05-08T13:37:13Z 2024-05-08T13:37:13Z 2024-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/17662 1669-2314 0325-8718 https://doi.org/10.58149/7aj0-5549 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Ediciones INTA RIA 50 (1) : 8-13. (abril 2024) |
| spellingShingle | Soja Morfología Procesamiento Digital de Imágenes Soybeans Morphology Digital Image Processing Villaverde, Jorge E. Cleva, Mario Sergio Volume estimation of unbroken soybeans samples using digital image processing techniques |
| title | Volume estimation of unbroken soybeans samples using digital image processing techniques |
| title_full | Volume estimation of unbroken soybeans samples using digital image processing techniques |
| title_fullStr | Volume estimation of unbroken soybeans samples using digital image processing techniques |
| title_full_unstemmed | Volume estimation of unbroken soybeans samples using digital image processing techniques |
| title_short | Volume estimation of unbroken soybeans samples using digital image processing techniques |
| title_sort | volume estimation of unbroken soybeans samples using digital image processing techniques |
| topic | Soja Morfología Procesamiento Digital de Imágenes Soybeans Morphology Digital Image Processing |
| url | http://hdl.handle.net/20.500.12123/17662 https://doi.org/10.58149/7aj0-5549 |
| work_keys_str_mv | AT villaverdejorgee volumeestimationofunbrokensoybeanssamplesusingdigitalimageprocessingtechniques AT clevamariosergio volumeestimationofunbrokensoybeanssamplesusingdigitalimageprocessingtechniques |