Volume estimation of unbroken soybeans samples using digital image processing techniques

The calculation of volume of different oilseed grains through computational models has demonstrated its effectiveness and efficiency. In the present work, the model has been extended to allow calculations of the soybean volume. The model proposes that each grain of the sample is assimilated to a par...

Descripción completa

Detalles Bibliográficos
Autores principales: Villaverde, Jorge E., Cleva, Mario Sergio
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Ediciones INTA 2024
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/17662
https://doi.org/10.58149/7aj0-5549
_version_ 1855037708605325312
author Villaverde, Jorge E.
Cleva, Mario Sergio
author_browse Cleva, Mario Sergio
Villaverde, Jorge E.
author_facet Villaverde, Jorge E.
Cleva, Mario Sergio
author_sort Villaverde, Jorge E.
collection INTA Digital
description The calculation of volume of different oilseed grains through computational models has demonstrated its effectiveness and efficiency. In the present work, the model has been extended to allow calculations of the soybean volume. The model proposes that each grain of the sample is assimilated to a parallelepiped with main axes L (length), W (width) and T (thickness). The L and W values are determined from the Feret distances of the image, and the thickness is assumed to be proportional to the width of the grain. The proportionality constant k is calculated by using the formula of the model and validated against the experimental volume of the samples, fielding a confidence or percentual relative deviation. The model developed approximates soybean volume with a confidence of 1.25%, using low-cost hardware for image acquisition and moderate computational resources.
format info:ar-repo/semantics/artículo
id INTA17662
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Ediciones INTA
publisherStr Ediciones INTA
record_format dspace
spelling INTA176622024-05-08T13:42:17Z Volume estimation of unbroken soybeans samples using digital image processing techniques Villaverde, Jorge E. Cleva, Mario Sergio Soja Morfología Procesamiento Digital de Imágenes Soybeans Morphology Digital Image Processing The calculation of volume of different oilseed grains through computational models has demonstrated its effectiveness and efficiency. In the present work, the model has been extended to allow calculations of the soybean volume. The model proposes that each grain of the sample is assimilated to a parallelepiped with main axes L (length), W (width) and T (thickness). The L and W values are determined from the Feret distances of the image, and the thickness is assumed to be proportional to the width of the grain. The proportionality constant k is calculated by using the formula of the model and validated against the experimental volume of the samples, fielding a confidence or percentual relative deviation. The model developed approximates soybean volume with a confidence of 1.25%, using low-cost hardware for image acquisition and moderate computational resources. El cálculo del volumen de diferentes granos de oleaginosas a través de modelos computacionales ha demostrado efectividad y eficiencia. En el presente trabajo, el modelo se ha ampliado para permitir cálculos del volumen de soja. En el modelo propuesto, cada grano de la muestra se asimila a un paralelepípedo con ejes principales L (largo), W (ancho) y T (espesor). Los valores L y W se determinan a partir de las distancias de Feret de la imagen y se supone que el espesor es proporcional al ancho del grano. La constante de proporcionalidad k se calcula utilizando la fórmula del modelo y se valida frente al volumen experimental de las muestras, con una confianza o desviación relativa porcentual. El modelo desarrollado aproxima el volumen de soja con una confianza del 1,25% utilizando hardware de bajo costo para la adquisición de imágenes y recursos computacionales moderados. Gerencia de Contenidos Periodísticos y Editoriales, DNACI, INTA Fil: Villaverde, Jorge E. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina Fil: Cleva, Mario Sergio. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina 2024-05-08T13:37:13Z 2024-05-08T13:37:13Z 2024-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/17662 1669-2314 0325-8718 https://doi.org/10.58149/7aj0-5549 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Ediciones INTA RIA 50 (1) : 8-13. (abril 2024)
spellingShingle Soja
Morfología
Procesamiento Digital de Imágenes
Soybeans
Morphology
Digital Image Processing
Villaverde, Jorge E.
Cleva, Mario Sergio
Volume estimation of unbroken soybeans samples using digital image processing techniques
title Volume estimation of unbroken soybeans samples using digital image processing techniques
title_full Volume estimation of unbroken soybeans samples using digital image processing techniques
title_fullStr Volume estimation of unbroken soybeans samples using digital image processing techniques
title_full_unstemmed Volume estimation of unbroken soybeans samples using digital image processing techniques
title_short Volume estimation of unbroken soybeans samples using digital image processing techniques
title_sort volume estimation of unbroken soybeans samples using digital image processing techniques
topic Soja
Morfología
Procesamiento Digital de Imágenes
Soybeans
Morphology
Digital Image Processing
url http://hdl.handle.net/20.500.12123/17662
https://doi.org/10.58149/7aj0-5549
work_keys_str_mv AT villaverdejorgee volumeestimationofunbrokensoybeanssamplesusingdigitalimageprocessingtechniques
AT clevamariosergio volumeestimationofunbrokensoybeanssamplesusingdigitalimageprocessingtechniques