Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis

Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO...

Descripción completa

Detalles Bibliográficos
Autores principales: Del Brio, Dolores, Tassile, Valentin, Bramardi, Sergio Jorge, Fernandez, Dario Eduardo, Reeb, Pablo Daniel
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 2023
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/16325
https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/6452
https://doi.org/10.48162/rev.39.104
_version_ 1855037386176593920
author Del Brio, Dolores
Tassile, Valentin
Bramardi, Sergio Jorge
Fernandez, Dario Eduardo
Reeb, Pablo Daniel
author_browse Bramardi, Sergio Jorge
Del Brio, Dolores
Fernandez, Dario Eduardo
Reeb, Pablo Daniel
Tassile, Valentin
author_facet Del Brio, Dolores
Tassile, Valentin
Bramardi, Sergio Jorge
Fernandez, Dario Eduardo
Reeb, Pablo Daniel
author_sort Del Brio, Dolores
collection INTA Digital
description Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size. Images of trees were taken during the day and at night in apple and pear trees while fruits were manually counted. Trained models were evaluated according to recall, precision and F1score. The correlation between detected and counted fruits was calculated while fruit size estimation was made after drawing straight lines on each fruit and using reference elements. The precision, recall and F1score achieved by the models were up to 0.86, 0.83 and 0.84, respectively. Correlation coefficients between fruit sizes measured manually and by images were 0.73 for apples and 0.80 for pears. The proposed methodologies showed promising results, allowing forecasters to make less time-consuming and accurate estimates compared to manual measurements.
format info:ar-repo/semantics/artículo
id INTA16325
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo
publisherStr Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo
record_format dspace
spelling INTA163252023-12-22T12:36:13Z Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis Del Brio, Dolores Tassile, Valentin Bramardi, Sergio Jorge Fernandez, Dario Eduardo Reeb, Pablo Daniel Malus Pumila Pyrus Communis Manzana Pera Apples Pears Fruit Detection Artificial Vision Yield Forecast Detección de Frutos Visión Artificial Predicción de Cosecha Malus Domestica Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size. Images of trees were taken during the day and at night in apple and pear trees while fruits were manually counted. Trained models were evaluated according to recall, precision and F1score. The correlation between detected and counted fruits was calculated while fruit size estimation was made after drawing straight lines on each fruit and using reference elements. The precision, recall and F1score achieved by the models were up to 0.86, 0.83 and 0.84, respectively. Correlation coefficients between fruit sizes measured manually and by images were 0.73 for apples and 0.80 for pears. The proposed methodologies showed promising results, allowing forecasters to make less time-consuming and accurate estimates compared to manual measurements. Para pronosticar la producción es necesario contar el número de frutos de los árboles y estimar el tamaño medio. Esta información se obtiene manualmente y requiere mucha mano de obra experimentada. La visión artificial surge como alternativa para obtener más información en menos tiempo. Los objetivos del trabajo fueron entrenar modelos de visión artificial para detectar y contar el número de peras y manzanas en árboles a partir de imágenes; y medir diámetros de frutos en imágenes. Se usaron modelos pre-entrenados para detección de objetos basados en redes neuronales (YOLO). Se tomaron imágenes de árboles de día y de noche, y los frutos de cada planta fueron contados manualmente. Los modelos se evaluaron según sensibilidad, precisión y F1score; y se calculó la correlación entre frutos detectados y contados. La estimación de diámetros se realizó trazando líneas rectas sobre cada fruto y utilizando elementos de referencia. La precisión, sensibilidad y F1score alcanzados por los modelos fueron 0,86, 0,83 y 0,84, respectivamente. Las correla-ciones entre diámetros medidos manualmente y por imágenes fueron de 0,73 en manzanas y 0,80 en peras. Las metodologías propuestas permitieron realizar estimaciones a partir de imágenes con una precisión aceptable y en menor tiempo respecto de las mediciones manuales. EEA Alto Valle Fil: Del Brío, Dolores. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina Fil: Tassile, Valentín. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnología de los Alimentos; Argentina Fil: Bramardi, Sergio Jorge. Universidad Nacional del Comahue. Departamento de Estadística; Argentina Fil: Fernandez, Darío Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina Fil: Reeb, Pablo Daniel. Universidad Nacional del Comahue. Departamento de Estadística; Argentina 2023-12-22T12:19:57Z 2023-12-22T12:19:57Z 2023-12 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/16325 https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/6452 1853-8665 https://doi.org/10.48162/rev.39.104 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo Revista de la Facultad de Ciencias Agrarias / Universidad Nacional de Cuyo 55 (2) : 1-11 (2023)
spellingShingle Malus Pumila
Pyrus Communis
Manzana
Pera
Apples
Pears
Fruit Detection
Artificial Vision
Yield Forecast
Detección de Frutos
Visión Artificial
Predicción de Cosecha
Malus Domestica
Del Brio, Dolores
Tassile, Valentin
Bramardi, Sergio Jorge
Fernandez, Dario Eduardo
Reeb, Pablo Daniel
Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
title Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
title_full Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
title_fullStr Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
title_full_unstemmed Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
title_short Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
title_sort apple malus domestica and pear pyrus communis yield prediction after tree image analysis
topic Malus Pumila
Pyrus Communis
Manzana
Pera
Apples
Pears
Fruit Detection
Artificial Vision
Yield Forecast
Detección de Frutos
Visión Artificial
Predicción de Cosecha
Malus Domestica
url http://hdl.handle.net/20.500.12123/16325
https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/6452
https://doi.org/10.48162/rev.39.104
work_keys_str_mv AT delbriodolores applemalusdomesticaandpearpyruscommunisyieldpredictionaftertreeimageanalysis
AT tassilevalentin applemalusdomesticaandpearpyruscommunisyieldpredictionaftertreeimageanalysis
AT bramardisergiojorge applemalusdomesticaandpearpyruscommunisyieldpredictionaftertreeimageanalysis
AT fernandezdarioeduardo applemalusdomesticaandpearpyruscommunisyieldpredictionaftertreeimageanalysis
AT reebpablodaniel applemalusdomesticaandpearpyruscommunisyieldpredictionaftertreeimageanalysis