Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
Poultry production is one of the main and fastest developing branches of the agri-food industry in the world. Chicken litter (ChL) is the most abundant waste from this industry and requires alternative treatments to help mitigate the environmental impacts of improper disposal. Fast pyrolysis and hyd...
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Artículo |
| Language: | Inglés |
| Published: |
Elsevier
2023
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.12123/13894 https://www.sciencedirect.com/science/article/pii/S0165237022003667 https://doi.org/10.1016/j.jaap.2022.105796 |
| _version_ | 1855485260489293824 |
|---|---|
| author | Pachón Gómez, Erica M. Domínguez, Rodrigo E. López, Débora A. Téllez, Jhoan F. Marino, Marcos D. Almada, Natalia Soledad Gange, Juan Martín Moyano, E. Laura |
| author_browse | Almada, Natalia Soledad Domínguez, Rodrigo E. Gange, Juan Martín López, Débora A. Marino, Marcos D. Moyano, E. Laura Pachón Gómez, Erica M. Téllez, Jhoan F. |
| author_facet | Pachón Gómez, Erica M. Domínguez, Rodrigo E. López, Débora A. Téllez, Jhoan F. Marino, Marcos D. Almada, Natalia Soledad Gange, Juan Martín Moyano, E. Laura |
| author_sort | Pachón Gómez, Erica M. |
| collection | INTA Digital |
| description | Poultry production is one of the main and fastest developing branches of the agri-food industry in the world. Chicken litter (ChL) is the most abundant waste from this industry and requires alternative treatments to help mitigate the environmental impacts of improper disposal. Fast pyrolysis and hydrothermal conversion are two recognized thermochemical approaches for the transformation of different types of biomasses, including agro-industrial waste. Fast pyrolysis takes place at atmospheric pressure or under vacuum at moderate to high temperatures (400–800 °C) in the absence of oxygen and requires drying of the feedstock, whereas hydrothermal conversion is a low temperature (180–300 °C) and high pressure (up to 30 MPa) process that takes place in liquid water and particularly suited for moist materials. In this work, we present experimental results that provide a comparison of bio-oils produced by fast pyrolysis and hydrothermal conversion of ChL. In addition, the composition of the pyrolytic oils from ChL is compared with the data obtained from rice husk (the main component of ChL), studied previously. Fast pyrolysis experiments were carried out in a bed reactor at temperatures ranging from 400° to 700°C and at two reaction times of 20- and 40-min. Phenols and other oxygenated compounds were the main families of chemicals present in the bio-oils. Among oxygenated derivatives, fatty acids were predominant. Hydrothermal conversion experiments were performed between 220 and 240 °C for 20- and 40- min and the oil fraction was obtained by evaporation of water from the reaction mixture followed by freeze-drying. These bioliquids were found to be concentrated in fatty acids, especially palmitic acid. |
| format | Artículo |
| id | INTA13894 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2023 |
| publishDateRange | 2023 |
| publishDateSort | 2023 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | INTA138942023-01-12T13:47:59Z Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste Pachón Gómez, Erica M. Domínguez, Rodrigo E. López, Débora A. Téllez, Jhoan F. Marino, Marcos D. Almada, Natalia Soledad Gange, Juan Martín Moyano, E. Laura Aves de Corral Pirólisis Estiércol de Pollo Cama (animales) Poultry Pyrolysis Chicken Manure Litter for Animals Conversión Hidrotermal Hydrothermal Conversion Poultry production is one of the main and fastest developing branches of the agri-food industry in the world. Chicken litter (ChL) is the most abundant waste from this industry and requires alternative treatments to help mitigate the environmental impacts of improper disposal. Fast pyrolysis and hydrothermal conversion are two recognized thermochemical approaches for the transformation of different types of biomasses, including agro-industrial waste. Fast pyrolysis takes place at atmospheric pressure or under vacuum at moderate to high temperatures (400–800 °C) in the absence of oxygen and requires drying of the feedstock, whereas hydrothermal conversion is a low temperature (180–300 °C) and high pressure (up to 30 MPa) process that takes place in liquid water and particularly suited for moist materials. In this work, we present experimental results that provide a comparison of bio-oils produced by fast pyrolysis and hydrothermal conversion of ChL. In addition, the composition of the pyrolytic oils from ChL is compared with the data obtained from rice husk (the main component of ChL), studied previously. Fast pyrolysis experiments were carried out in a bed reactor at temperatures ranging from 400° to 700°C and at two reaction times of 20- and 40-min. Phenols and other oxygenated compounds were the main families of chemicals present in the bio-oils. Among oxygenated derivatives, fatty acids were predominant. Hydrothermal conversion experiments were performed between 220 and 240 °C for 20- and 40- min and the oil fraction was obtained by evaporation of water from the reaction mixture followed by freeze-drying. These bioliquids were found to be concentrated in fatty acids, especially palmitic acid. EEA Concepción del Uruguay Fil: Pachón Gómez, Erica M. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Pachón Gómez, Erica M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Domínguez, Rodrigo E. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Domínguez, Rodrigo E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: López, Débora A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: López, Débora A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Téllez, Jhoan F. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Téllez, Jhoan F. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Téllez, Jhoan F. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Marino, Marcos D. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Marino, Marcos D. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Almada, Natalia Soledad. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina. Fil: Gange, Juan Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina Fil: Moyano, E. Laura. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Moyano, E. Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina 2023-01-12T13:42:44Z 2023-01-12T13:42:44Z 2023-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13894 https://www.sciencedirect.com/science/article/pii/S0165237022003667 0165-2370 1873-250X https://doi.org/10.1016/j.jaap.2022.105796 eng info:eu-repo/semantics/openAccess application/pdf Elsevier Journal of Analytical and Applied Pyrolysis 169 : 105796 (January 2023) |
| spellingShingle | Aves de Corral Pirólisis Estiércol de Pollo Cama (animales) Poultry Pyrolysis Chicken Manure Litter for Animals Conversión Hidrotermal Hydrothermal Conversion Pachón Gómez, Erica M. Domínguez, Rodrigo E. López, Débora A. Téllez, Jhoan F. Marino, Marcos D. Almada, Natalia Soledad Gange, Juan Martín Moyano, E. Laura Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste |
| title | Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste |
| title_full | Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste |
| title_fullStr | Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste |
| title_full_unstemmed | Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste |
| title_short | Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste |
| title_sort | chicken litter a waste or a source of chemicals fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste |
| topic | Aves de Corral Pirólisis Estiércol de Pollo Cama (animales) Poultry Pyrolysis Chicken Manure Litter for Animals Conversión Hidrotermal Hydrothermal Conversion |
| url | http://hdl.handle.net/20.500.12123/13894 https://www.sciencedirect.com/science/article/pii/S0165237022003667 https://doi.org/10.1016/j.jaap.2022.105796 |
| work_keys_str_mv | AT pachongomezericam chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste AT dominguezrodrigoe chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste AT lopezdeboraa chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste AT tellezjhoanf chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste AT marinomarcosd chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste AT almadanataliasoledad chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste AT gangejuanmartin chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste AT moyanoelaura chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste |