Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste

Poultry production is one of the main and fastest developing branches of the agri-food industry in the world. Chicken litter (ChL) is the most abundant waste from this industry and requires alternative treatments to help mitigate the environmental impacts of improper disposal. Fast pyrolysis and hyd...

Full description

Bibliographic Details
Main Authors: Pachón Gómez, Erica M., Domínguez, Rodrigo E., López, Débora A., Téllez, Jhoan F., Marino, Marcos D., Almada, Natalia Soledad, Gange, Juan Martín, Moyano, E. Laura
Format: Artículo
Language:Inglés
Published: Elsevier 2023
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/13894
https://www.sciencedirect.com/science/article/pii/S0165237022003667
https://doi.org/10.1016/j.jaap.2022.105796
_version_ 1855485260489293824
author Pachón Gómez, Erica M.
Domínguez, Rodrigo E.
López, Débora A.
Téllez, Jhoan F.
Marino, Marcos D.
Almada, Natalia Soledad
Gange, Juan Martín
Moyano, E. Laura
author_browse Almada, Natalia Soledad
Domínguez, Rodrigo E.
Gange, Juan Martín
López, Débora A.
Marino, Marcos D.
Moyano, E. Laura
Pachón Gómez, Erica M.
Téllez, Jhoan F.
author_facet Pachón Gómez, Erica M.
Domínguez, Rodrigo E.
López, Débora A.
Téllez, Jhoan F.
Marino, Marcos D.
Almada, Natalia Soledad
Gange, Juan Martín
Moyano, E. Laura
author_sort Pachón Gómez, Erica M.
collection INTA Digital
description Poultry production is one of the main and fastest developing branches of the agri-food industry in the world. Chicken litter (ChL) is the most abundant waste from this industry and requires alternative treatments to help mitigate the environmental impacts of improper disposal. Fast pyrolysis and hydrothermal conversion are two recognized thermochemical approaches for the transformation of different types of biomasses, including agro-industrial waste. Fast pyrolysis takes place at atmospheric pressure or under vacuum at moderate to high temperatures (400–800 °C) in the absence of oxygen and requires drying of the feedstock, whereas hydrothermal conversion is a low temperature (180–300 °C) and high pressure (up to 30 MPa) process that takes place in liquid water and particularly suited for moist materials. In this work, we present experimental results that provide a comparison of bio-oils produced by fast pyrolysis and hydrothermal conversion of ChL. In addition, the composition of the pyrolytic oils from ChL is compared with the data obtained from rice husk (the main component of ChL), studied previously. Fast pyrolysis experiments were carried out in a bed reactor at temperatures ranging from 400° to 700°C and at two reaction times of 20- and 40-min. Phenols and other oxygenated compounds were the main families of chemicals present in the bio-oils. Among oxygenated derivatives, fatty acids were predominant. Hydrothermal conversion experiments were performed between 220 and 240 °C for 20- and 40- min and the oil fraction was obtained by evaporation of water from the reaction mixture followed by freeze-drying. These bioliquids were found to be concentrated in fatty acids, especially palmitic acid.
format Artículo
id INTA13894
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA138942023-01-12T13:47:59Z Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste Pachón Gómez, Erica M. Domínguez, Rodrigo E. López, Débora A. Téllez, Jhoan F. Marino, Marcos D. Almada, Natalia Soledad Gange, Juan Martín Moyano, E. Laura Aves de Corral Pirólisis Estiércol de Pollo Cama (animales) Poultry Pyrolysis Chicken Manure Litter for Animals Conversión Hidrotermal Hydrothermal Conversion Poultry production is one of the main and fastest developing branches of the agri-food industry in the world. Chicken litter (ChL) is the most abundant waste from this industry and requires alternative treatments to help mitigate the environmental impacts of improper disposal. Fast pyrolysis and hydrothermal conversion are two recognized thermochemical approaches for the transformation of different types of biomasses, including agro-industrial waste. Fast pyrolysis takes place at atmospheric pressure or under vacuum at moderate to high temperatures (400–800 °C) in the absence of oxygen and requires drying of the feedstock, whereas hydrothermal conversion is a low temperature (180–300 °C) and high pressure (up to 30 MPa) process that takes place in liquid water and particularly suited for moist materials. In this work, we present experimental results that provide a comparison of bio-oils produced by fast pyrolysis and hydrothermal conversion of ChL. In addition, the composition of the pyrolytic oils from ChL is compared with the data obtained from rice husk (the main component of ChL), studied previously. Fast pyrolysis experiments were carried out in a bed reactor at temperatures ranging from 400° to 700°C and at two reaction times of 20- and 40-min. Phenols and other oxygenated compounds were the main families of chemicals present in the bio-oils. Among oxygenated derivatives, fatty acids were predominant. Hydrothermal conversion experiments were performed between 220 and 240 °C for 20- and 40- min and the oil fraction was obtained by evaporation of water from the reaction mixture followed by freeze-drying. These bioliquids were found to be concentrated in fatty acids, especially palmitic acid. EEA Concepción del Uruguay Fil: Pachón Gómez, Erica M. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Pachón Gómez, Erica M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Domínguez, Rodrigo E. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Domínguez, Rodrigo E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: López, Débora A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: López, Débora A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Téllez, Jhoan F. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Téllez, Jhoan F. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Téllez, Jhoan F. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Marino, Marcos D. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Marino, Marcos D. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Almada, Natalia Soledad. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina. Fil: Gange, Juan Martí­n. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina Fil: Moyano, E. Laura. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina Fil: Moyano, E. Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina 2023-01-12T13:42:44Z 2023-01-12T13:42:44Z 2023-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13894 https://www.sciencedirect.com/science/article/pii/S0165237022003667 0165-2370 1873-250X https://doi.org/10.1016/j.jaap.2022.105796 eng info:eu-repo/semantics/openAccess application/pdf Elsevier Journal of Analytical and Applied Pyrolysis 169 : 105796 (January 2023)
spellingShingle Aves de Corral
Pirólisis
Estiércol de Pollo
Cama (animales)
Poultry
Pyrolysis
Chicken Manure
Litter for Animals
Conversión Hidrotermal
Hydrothermal Conversion
Pachón Gómez, Erica M.
Domínguez, Rodrigo E.
López, Débora A.
Téllez, Jhoan F.
Marino, Marcos D.
Almada, Natalia Soledad
Gange, Juan Martín
Moyano, E. Laura
Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
title Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
title_full Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
title_fullStr Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
title_full_unstemmed Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
title_short Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
title_sort chicken litter a waste or a source of chemicals fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste
topic Aves de Corral
Pirólisis
Estiércol de Pollo
Cama (animales)
Poultry
Pyrolysis
Chicken Manure
Litter for Animals
Conversión Hidrotermal
Hydrothermal Conversion
url http://hdl.handle.net/20.500.12123/13894
https://www.sciencedirect.com/science/article/pii/S0165237022003667
https://doi.org/10.1016/j.jaap.2022.105796
work_keys_str_mv AT pachongomezericam chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste
AT dominguezrodrigoe chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste
AT lopezdeboraa chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste
AT tellezjhoanf chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste
AT marinomarcosd chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste
AT almadanataliasoledad chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste
AT gangejuanmartin chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste
AT moyanoelaura chickenlitterawasteorasourceofchemicalsfastpyrolysisandhydrothermalconversionasalternativesinthevalorisationofpoultrywaste