Pyrolytic coproduction of bio-char and upgraded bio-oils from abundant agro-industrial wastes
The co-production of bio-char and upgraded bio-oil by fast pyrolysis of raw and sulfuric-acid pretreated agro-industrial wastes (corn cob, sugarcane bagasse and sunflower seed hull) was investigated to valorize wastes as sources of value-added products (VAPs) following the circular bio-economy syste...
| Autores principales: | , , , , , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2021
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/10564 https://link.springer.com/article/10.1007/s43153-021-00167-6 https://doi.org/10.1007/s43153-021-00167-6 |
| Sumario: | The co-production of bio-char and upgraded bio-oil by fast pyrolysis of raw and sulfuric-acid pretreated agro-industrial wastes (corn cob, sugarcane bagasse and sunflower seed hull) was investigated to valorize wastes as sources of value-added products (VAPs) following the circular bio-economy system. To this end, proximate and elemental analyses were performed, and adsorption properties were determined in pyrolysis products. Bio-char and bio-oil yields from raw wastes ranged 28–33% and 30–35%, respectively. For all wastes, acid pretreatment increased the solid fraction and caused a reduction of the liquid one, compared to untreated wastes. Pyrolysis of raw wastes led to the co-production of bio-chars and bio-oils with different applications. Bio-chars could be put in for soil amendment, primarily due to high ashes concentration, mesoporosity, and elevated cation exchange capacity; whereas, bio-oils could be upgraded by water addition, leading to a source for carrying out reforming reactions in the context of hydrogen production. Properties of bio-chars from acid washed biomasses enabled them for pollutant remediation, due to their high specific surface and microporosity features. The corresponding bio-liquid was a stable-to-storage material, being a practical source of furfural. These findings emphasize that lignocellulosic wastes can be envisaged as starting materials for producing VAPs via pyrolysis. |
|---|